N X A AR T O T YO R MO P U R RS LA AR L AU LR A A BARE AR RA ST RASST MRS R AR AR RS- A ar

e v F COPY

'AD-A181 538

Techmical Report 791

- Motion Planning
| with S1x Degrees
of Freedom

Bruce R. Donald

MIT Artificial lntelligence Laboratory

DTIC

m, ELECTE %
 JUN 1 6 1967 [

LN " -

R

-_‘.-"f_'f

. -,:'.." "

AR A

r_:"‘.;“.;-'_:('.:

[o T

- 'J"-- \’ ‘

[S i S

.

ty

>

e,

v

- .

AR A

G J

e g

t OGRS
A

f ..\“ A

; i

.
Vo

L

g
2
?
"‘
»

A’y

&
OO
,

‘-
-]
ty

W, W, vl s
BRI Y
RGN A
"f\.'\f\(v_"
NN L N
AR S A
T e ey
" ‘\’*-
P,
g .’»_,‘\.._\ -
R Mo
.
TN]
:-'\‘l.:l’ -“,‘l‘

5 fa)
r
o

".a,z

A)‘I Fd
L
".?
.".l
&
o
'y

27
v
)
;. Iy a
P A N

b

OSSR AN T LI & e

; UNCILASSIFIED

SECURITY CLASSIFICATION OF THIS FAGE (When Data Enteres)

‘ ' READ INSTRUCTIONS

! REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
' REPQRT NUMBER 2. GOVYT ACGCESSION KO.| 2. RECIPIENT'S CATALOG NUMBER

AI-TR-791

4. TITLE (and Subritie) S. TYPE OF KEPORT & PERIOD COVERED

Motion Planning with Six Degrees of Freedom technical report

6. PERFORMING ORG. REPORT NUMBER

! 7. AUTHOR(®) 8. COMTRMACT OR GRANT NUMBER(s)

NOQO14-81-K-0494

NGOO14-80--C~0505
N00014-82-K-0334

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UMIT NUMBERS

Bruce R. Donald

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

CONTROLLING OFFICE NAME AND ACDAESSE

1", 12. REPORY DATE

Advanced Research Projects Agency HMAY 1984
v 1400 Wilson Blvd 13. NUMBER GF PAGES
i Arlington, Virginia 22209 201
T4 MONITORING AGENCY JAME & AUDDRESS(If different from Controlling Office) | 'B. SECURITY CLASS. (of thie regort,
0ffice of Naval Research UNCLASSIFIED

Information Systems
Arlington, Virginia 22217

T%a. D!CkASSIFICATIONIDOWNGRADWG
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

~r oL a s _ . £
UViIdLTiuuLioi Ol

Distribution is unlimited

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reaverse side il nscessnry and identily by block number)
Motion planning

path plaunning

configuration space robotics

geometric planning
collision avoidance

generalized Voroni diagram

spatial reasoning

piano mover's problem geometric modelling

computational geometry obstacle avoidance
_1'0, ABSTRACT (Continve on reverse aide if necessary and identity by block number)

"_—'”jf The motion planning problem is of central importance to the fields of robotics,
spatial planning, and automated design.=~1In robotics we are interested in the
automatic synthesis of robot motions, given high-level specifications of tasks
and geometric models of the robot and/Obstacles. The "Mover's" problem is to
find a continuous, collision-free path for a moving object through an environ-
ment containing obstacles. We prebong)an implemented algorithm for the *'clas-
sical% formulation ol the thice--dimensional Movers' problem: Given an (OVER)

FORM
JAN 7)Y

1473

EDITIOM QF I NOV 83 1S ORSOLETE
S/N 0102-014-4600 -

oD , UNCLASSIFIED .

SACUMITY CLASSIFICATION OF THIS PAGE (When Jnre Bntered)

fo

, .]

MUAF AA AR T HRALITRTATAN AN RN ASATR AT ACTAN BT AT AT ATTAN R R BT

AT AAT T Y AN A" R e a1y B A N A N T O LA

“an

.
PN

g S W PO e

~ o

:’

N I T A T P AT R R TR S RN O R AU T R T A P T N R G TR TR I N LY LN U LAY

\\\éélock 20 cont.
| 2t

arbitrary rigid polyhedral moving object with three tran§1ational and three
rotational degrees of freedom, find a continuous, collision¥free path taking “P"
from some initial configuration to a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm (at
a given resolution) fer the full six degree of freedom Movers' problem. The al-
gorithm transforms the six degree of freedom planning problem into a point navigation
problem in a six-dimensional configuration space (called C-Space). The C-Space
obstacles, which characterize the physically unachievable configurations, are
directly represented by six-~diuensional manifolds whose boundaries are five
dimensional C-surfaces, By characterizing these surfaces and their intersections,
collision~free paths may be found by the cliosure of three operators which

(i) slide along 5~dimensional level C-surfaces parallel to C-Space obstacles;

(ii) slide along l- to 4-dimensional intersections of level C-surfaces; and

(iii) jump between 6-dimensiona: obstacles.t

Implementing the point navigation operators ?Equires solving fundamental repre-
sentational and algorithmic questions: we will derive new structural properties
of the C-Space constraints and show how to construct and represent C-surfaces

and their intersection manifolds. A definition and new theoretical results

are presented for a six-dimensional C-Space extension of the generalized

Voronoi diagram; called the '"C-Voronoi diagram', whose structure we relate to

the C-surface intersection manifolds. The representations and algorithms we
develop impact many .geometric planning problems, and extend to Cartesian
manipulators with six degrees of freedom.

Motion Planning with Six Degrees of Frecedom
by

Bruce Randall Donald

(© Massachusetts Institute of Technology, May 1984

Accession For

NTIS GRAXI ‘g
DTIC TAB
Unannounced O
Justification

By

Diltributq._ion/

Avallarility Codes
|JAvail and/or
Dist Special

Al L

This report is a revised version of chapters 1-7 of “Local and Global Techniques
for Motion Planning” a thesis submitted on May 10, 1984 to the Department
of Elcctrical Enginecring and Cormputer Science at the Massachusetts Institute of

Technology in partial fullilliment of the requirements for the degree of Master of W
Scierce. Chapters 8 11 inay be obtuined seperately as A.l. Memo 736, “/ypothesizing AN

. . 4. f b A
Channels Through I'ree-Space in Solving the Findpath Problem. e

WSS MW AT LD UEEE AW AV B W S RARTE W LA AN W W AF W LT WLGECWOAE I W WRR

Motion Planning with Six Degrees of Freedom

by

Bruce Randall Donald

Abstract: The motion planning problem is of centrai importance to the fields
of robotics, spatial plarning, and automated design. In robotics we are interested
in the automatic synthesis of robot motions, given high-level speciflications of
tasks 2nd geometric models of the robot and obstacles. The Mover’s problem
is to find a continuous, collision-free path for a moving object through an
environment, containing obstacles. We present an implemented algorithin for the
classical formulation of the three-dimensional Movers’ problem: Given an arbitrary
rigid polyhedral moving object P with threc translational and threc rotational
degrees of freedom, find a continuous, collision-free path taking P from some initial
configuration t» a desired goal configuration.

This thesis describes the first known implementation of a complete algorithm
(at a given resolution) for the full six degree of freedom Movers’ problem. The
algorithm transforms the six degree of frecdom planning problem into a point
ravigation problem in a six-dimensional conliguration space (called C-Space). The
C-Space obstacles, which characterize the physically unachievable configurations,
are directly represented by six-dimensional manifolds whose boundaries are five
dimensional C-surfaces. By characterizing these surfaces and their intersections,
collision-free paths may be found by the closure of three operators which (i)
slide along 5-dimensional level C-surfaces parallel to C-Space obstacles; (ii) slide
along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jurnp between
6-dimensional obstacles.

Implementing the point navigation operators requires solving fundaraental
represcitational and algorithmic questions: we will derive new structural properties
of the C-Space constraints and show how to construct and represent C-surfaces and
their intersection manilolds. A definition and new thecretical results are presented
for a six-dimensional C-Space extension of the generalized Voronoi diagram, called
the C-Voronoi diagram, whosce structure we relate to the C-surface intersection
manifolds. The representations and algorithms we develop impact many geometric
planning problems, and extend to Cartesian manipulators with six degrees of
frecdom.

8
Srard

) WA W a o o o o W7y W, W R L T T A e I TR L R L R 1O SO I L PRI I LI It [N RPN P oy o)
":’&.\N Nﬂh‘?x}\ ‘@ﬁw}&m"w}\ﬁ‘}?\\r\?‘ A N A A N N I R T A L Y A O RN S MR

Acknowledgements, This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support for
the Laboratory’s Artificial Intelligence research is provided in part by the System
Development Foundation, in part by the Office of Naval Research under Office of
Naval Rescarch contract N0O0014-81-K-0494, and in part by the Advanced Research
Projects Agency under Olfice of Naval Research contracts N00014-80-C-0505 and
NO0014 82-K- ¢334.

R A A R i S SR S AT R AT MRS SRRV

Acknowledgments

This work was made possible by many friends, mathematicians, and scientists at
the A.L. Lab. While tradition requires me (¢ take responsibility for any remaining
flaws, honestv compels me to share credit with them for whatever insight and
clarity this thesis manifests.

Pyt

'\
I am deeply indebted to my supervisor, Tomas Lozano-Pérez, for his guidance, 'I;"&
support, and encouragement. Many of the key ideas in this thesis arose in '
conversations with Tomads, and this work would have been impossible without his
help.

Thanks to Pairick Winston for providing generous support and the unique
environment of the A.l. Lab. In particular, thanks for the private VAX and Lisp
Machine I required for the implementation.

]

Michael Erdmann, John Canny, and Steve Buckley showed e shorter proofs
and better friendship t,han I probably deserved. They spent. mnany hours with me at
whiteboards discussing this research. Mike was alwa,ys willing to talk about math,
and spent the weekend alter his oral exam carcfully reading a draft of this thesis
and making many insightful comments and suggestions.

Thanks to Mike Brady, Rod Brooks, and Eric Grimson for reading drafts and
for much encouragement. Through their comments and infectious enthusiasm, the
presentation of this report was much improved. Rod shared his code and gave help
with thic iinplementation of the chaniels systew, too.

Thanks to all the robotics and vision people, especially Philippe Brou, Rich
Doyle, Ellen Hildreth, Gideon Sihar, Lori Sorayama, and Demetri Terzopoulos for
discussions and help at various times. Philippe’s Dover program allowed me to send
lisp machine graphics to our laser printer.

I would like to thank the Macsyma Consortium for the ability to manipulate
complicated equations. I am gratcful to George J. Carrette for spending many
hours helping to bring up Macsyma under NIL on our VAX, and for advice on how
to optimize the algebra system under NIL for the Lisp Machine.

Thanks to Robin for diversion and support. Finally, thanks t¢ my parents for
incalculable help over many years.

G R A e T A

Table of Contents

ADBSUIACE © o o v o et e 2
Acknowledgments o . Lo e e e e 4
Table of Contents . . « o v vt v v v v v et e e e e e e e e e e e 5
1. Geometric Planning Problems 0000, 7
1.1 What Are Geometric Planning Problems? 7
1.3 Configuration Space L oo e e 35
14 Localversus Glohal oL o o 57
1.5 Review of Previous Worko 59
1.6 An Outline of this Thesis: Research Contributions 55
How to Read this Thesis PP 66
2. A Pianning System for the Classical Mover’s Problem with Six Degrees
of Freedom ., e e e e e e e e e e 68
2.1 Definitions L L L L e e e e e e e e e e e e e e e e e e 69
2.2 Introduction L L L L L e e e e e e e e e e e e e 70
2.3 A Comvlete Search Strategy 74
2.4 Local Experts for the Find-Path Problem 82
2.5 lxamples of the Local ExpertsinUse, 106
2.6 Path Planning versus Discrete Intersection Detection 112
3. Qucstions of Representation: C-functlions and Applicability Constraints
in a Six Dimensional Configuration Space 123
2.1 Definitions and Conventions Lo 123
3.2 Representing Constraints in Configuration Space 125
3.3 The Geometric Interpretaiion for C-functions 128
3.4 Redundant Constraintso 129
3.5 Applicabiiity Constraints for Type {a) and (b) C-functions 131
3.6 Applicability Constraints for Type (¢) C-functions 135
3.7 Disambiguating Applicability Constraints (DACS) for Type (c)
Constraints L e e e e e e e 140
3.8 On the Structure of the Applicability Regions on SO(3) 146
3.9 Orienting Vype (c) Constraints 146
3.10 Singularities and Specialcases i48
311 Level ACI's L e e e e e e 148
3.12 A Note on the Computation and Algebra of Applicability
Conslraints o o o e e e e e e e e e 149
4, Mathematical Tools for Motion Planning in a Six Dimcnsional
Configuration Space L Lo 152

» Mo s\
NS AR NS N G

“onas
3 '-'_ LY
RV ATY

Fa 9. "

FAF AP

Y. - L3 - s
SNSRI

4.1 Introduction

4.2 The Intersection Problem in 82 X S

4.3 Related Problems in %2 x §!

4.4 The Intersection 'roblem in B? X SO(3)
4 5 The Algebra Systemu

4.6 Related Issucs in 8% X SO(3)

5. Moving Through Rotation Space
5.1 Introduction
5.2 The Applicability Decomposition for SO(3)
5.3 A Naive Algorithm Without an Update Strategy
5.4 Update Strategics: Example
5.5 Using Update Strategies
5.6 Update Strategies
5.7 Analysis and Evaluation

6. The C-Voronoi Diagram and its Relationship to Intersection Manifolds . .
6.1 Introduction
Theorem 1
Theorem II
Theorem IIT (The Existence of Bridge Manifolds)
The Equivalence Theorem for intersection Manifolds and the CVD .

7. Conclusion

Appendices

.. Details of the Intersccticn Problem, and Related Problems
il. Transformation to the Channel Domain

IIL. Integrating Local and Global Algorithins for the
Find-Path Problem

IV, A Listing of Macsyma Code

References

1
Geometric Planning Problems

Introduction and Statement of the Problem

The motion planning problem is of central importance to the fields of robotics,
spatial planning, and automated design. In robotics we arc interested in the
aulomatic synthesis of robol motivns, given high-level specificaiions of vasks and
geometric models of the robot and obstacles. The problem is to find a continuous,
collision-freec path for a moving object through an environment containing obstacies;
hence it has also been called the Find-Path or Piano Movers' problem. In its most
general forinulation the object can have an arbitrary number of hinges and joints,
and in some cases coordinated motion planning for multiple objects has been
considered. We will conline ourselves to the classical formulation of the Movers’
problem: Given an arbitrary rigid polyhedral moving object P, find a continuous,
collision-free path taking P from some initial conliguration to a desired goal
configuration. We are particularly interested in the 3-dimensional Movers’ problem,
for an object with 3 translational and 3 rotational degrees of frecdom. This thesis
describes the first known implementation of a complete algorithm (at a given

resolution) for the full 6 degree of frecdom Movers’ problem.

1.1. What are Geometric Planning Preblems?

Our work has impact on o class of geometric planning problems. In robotics

we arc typically interested in motion planning for a mobile robot or manipluator.

WY A AL AP PRI AL LG L P 0 8. N AN TN A A WA L

AL

Figure 1.1. An example of a solution path for the classical Mover's problem with six degrees
of frcedom. This illustration is a “titnc-lapse” pictare of a path fosnd by our planner for a
“aminer-shaped object. In all our examples, the workspace is bounded by a box (which is not
shown). This solution path requires use of all three rotational degrees of freedom.

In Computer-Aide” Design (CAD), the problem of automated structural design
for n structural members is also an instance of the most general form of the
Moever’s problem. The problem of determiring whether an object can be assembled
as designed, and of generating an assembly plan if it can, is also in this class.

Examples of geometric planning problems include:

() The Find-Pathor Movers'problem is to find continuous, collision-free path
for one or more moving objects in the presence of obstacles. Find-path problems
fall into two broad categories: single-body and multiple-body motion planning
problems. In the classical Movers’ problem, a single rigid polyhedral object must
be moved through a workspace containing polyhedral obstacles. For the linked
or hinged body Movers’ problem, a sct of moving objects connected via joints or

linkages must be moved. An industrial robot arm is a typical example of such an

AN B 220 AR R SAT 7 o S L T O s Y e A O A Oy P O T 2 T T T e T L0

% SN IR S T AU W RO U TR TREGICER TR PRI TR TR ¢ T TE-S LN LA VI FLAN] LAY LA TR DT S —————— Teem—"

ii

N

)

\

Figure 1.2. A diflerent view of the solution path for the hammer exunple, with the obstacles
“transparent” Lo allow us to view the rotations better.

object. In the coordinated planning problem, a number of independent {i.c., not

necessarily linked) objects must be moved. An algcerithm for mliple body motion

planning must ensure that thke moving objects collide neither with the walls nor !
with cach other, NS
o
et
- Q\“h'.'-"
(ii) The find-space problem is to find a collision-irce placement for une or L8 !
more objects in a field of obstacles. By analogy with the find-path problem, we W,

e

]
7 Y

can speak of the classical, linked-body, and coordinated find-space problems. In
compuer-zided design and automated design, the find-space problem is typically
subject to additional geoinctric constraints. Lozano-Pérez (1983) grouped find-path

aud find-space algorithms together as the spatial planning problems.

22

e

7
32

(iii)) The fine-motion problem cntails motion-planning along obstacle surfaces,

F e

\ typically while maintaining some applied force. Collision-free paths and placements

T r
wad

»
a

avoid obstacles: however, for many tasks in robotics and in automated design, it

LA
e
al
4._,1',?4"_

=}

7z Iy

% ;(
X

5
A,

i

N L Y q:
N,
T e R G A e T S S T B D R R N R R WY *}:-}}Z-:-}:‘ft-l-:‘:&

" e - -

NI ST € BB -

Figure 1.3. Application Example: Planning for an industrial robot armn with six degrees of
freedom is an example of the linked-body movers’ problem. (Figure courtesy of Rodney Brooks).

"R LN

——
LR

is necessary to plan motions and placements in contact with obstacle surfaces. For

example, consider the tasks of weldiug, insertion, and assembly in robotics. These

Aa V22

tasks require compliant motions, entailing consideration of additional physical

ST R T

constraints such as friction, kinematics, and force control. However, the compliant

T
IR
PRI o S

I
e} \
i; meotion planning preblem has a strong geometric flavor apd its solution requires A
X
» the teols of spatizl planning (sce Mason (1981), Erdmann (1984)).
h
»

-

‘s

{iv) Reccently, researchers have begun to consider motion planning witk
uncertainty (Mason (1981), Brooks (1982), Lozano-Pérez, Mason, and Taylor (1983),

Erdmann (1981)). Broadly speaking, uncertainty may arise from inaccuracy in

CAATIFES IR

|
object medels, sensors, or control. Motion planning with uncertainty also presumes
:*'.:: aigorithms and representations from spatial planning.
R
J As we can see, all geometric planning problems contain components of the 2
.
:3 spatial planning problem, cspecially if the underlying geometries are the same. In >
I;"e
$ 10
P Al
' (]

.

[0 N

D Y A L L A W L L T T N T T LA i U R (P e ‘ LY

B e el . CRJONCN RO S A @*___ T AN - k .

XV ACY AL T NV, A L DAL A A L8 AT S AR W
X " A Y,

-s—»l"r.
p—

==t

= AE BT o

g oy

Figure 1.4. Example from computer-aided design: Automatically generated flat-plate structure
from Donald (1983b). How can we gencrate structural patterns subject to the constraints of the
building cuvelope and mechanical core?

particular, for high-dimensional configuration spaces, the theoretical analyses of
Mason (1981), Lozano-Pérez, Mason, and Taylor (1983), and Erdmann (1984) all

presume geometric results which are derived in this thesis.

This work impacts all gcometric planning problems. To illustrate the theoretical
results, we address one particular problem, namely the classical Movers’ problem
with six¥ degrecs of freedom. Our algorithms immediately generalize to applications

involving gross-motion and fine-motion planning for Cartesian manipulators with

six degrees of freedom.

TR R R o e S
PSS LI LN FOL 3 G RN

AN sl e TN T ST T e ST
S U I SRR L R I R R i s T 2

start

Figure 1.5. A find-path problems fur an L-shaped object. The L-shaped object is shown amidst
obstacles in the start and goal configurations.

[64]

|

Figure 1.13. Solution Path 1, frame €4 (final configuration).

12

&)
T H S

q

[T

%\\

(2}
[s]
(33

=
>

o P TTTRTT TTT

H ,. i i
— o m _@ .
Figurc 1.6. Solution Path 1, frames 1 9: A diflicult solution path for the L-shaped object.
13
4
* S
B WAL A WA I P S RPN AT SO A T A 0 A Tk Y A N SN I AN

MmN Y AR
gt
1"."0“ '\‘f i

U0 R
ki

18]

B

[T
[T

(12}
L-
[15]

& G

\7 T\

T
ity
f
iy
iy
iy

o =) s
: = . = o o
[
}
T = e .
= = = o
Y
Figure 1.7. Solution Path 1, framces 10-18 : .
T
2Ny
l‘; ‘
F o8
G R
1 N
o

o

LTI AT RO g SOy et Ty 0 TOT 0 WYY LR N Y N AN A A AT T K T S A T e TS T G

[27]

[24]

fz1]

= bond o
[~ n o~y
::‘ . — [
—
= = [y
2 o 2
ot d brd

Figurce 1.8, Solution Path I, frames 19 .27

et e . - i . R . o o . Py]
O A0 T Ta T ™ AT Dn T VA A U T A U s Ta ot i U O U O U O m U s i O PO

B (L0 00U e i O

(38}

W W -
Bl 9 §

Figure 1.9. Solution Path I, frames 28 36

4.

v

A o

16

53

VTV, RGN U G W M P A B, A A s S Y s M e e Y

=

Lyl ~
> (2] ~
p - ili ii 2]
el) -
ol
T Nt
N ;EL .

~ pron —
[- oy

h A A

—
5 g 5
(=] U = =, .

Figure 1.10. Solution P’ath I, frames 37- 45

"‘{px w‘

17

VA ARSI
AP

~ L I B N T AT L (,'\rﬁ_ o0 "-_l"g’". v, {"\."ﬁ-r'\-‘ WYa MYl KL T
") A A T 3 N AT S AN AL AR N AT
O A o S AN S

; | |

a

l,. \i.i

O
RTINS p e
. - VAR IO

Ty e K

S

(511

S

X0

[s3}

S c

,[‘7]
= o
:

Sl

S

(49]

5 S

{52

[{“]

Figure 1.11. Solution Path 1, frames 48 54

A s s O
q| B &

, M (@ Im

, [T b [T [T

Figure 1.12. Solution Path 1, framneca &5 63

S

i
7‘.
: ::‘

)

ap_r
)

s
A
Pl

FT

=5

[12)
[15]

{9

L2
T gV

RS

SEen sl I

i

T
.

X
&

o
Y

1
QL
fﬁ,« —
1
BRI B

i

[1]
[16]

[3)

@,
]
{E

: (Plano is Invisible in 1-8)]

lf?'
[10]

(133

\

Figure L14. A diffcrent view of the saire solution path, showing how the L-ahaped object must Y
rotate to aliain the final position. The first six frames arc not shown, since the moving is not ‘a
visible from this perspective. Solution Path | (view 2); framces 7 15 r d

.

L. LA

- (F-'-. :u 7 ‘-.:. .,'_.\‘.e .._, ...~_..-‘ - N

(

[21]

(2¢]

|r1a2

.

{

[20]"
]

1

(|
= e |
T
4 l
g . M

Figure 1.15. Solution Patii § {view 2); framea 18-24

21

AAAAMONE N

NN

Sl 3

SN

LELIFRN
AL IR
* - em tm A

*, LA LA T | -
‘aﬁ'&r?;-'.".- " P e]

(271

N

{30]
Qi:;ZjT__—__.:::-————ﬁ é ifégg Sa
[33]

126]
iE;;; \
[29]
(32]

[25]

[28]

{31]
2EERED
S Sy
LRI

Figure 1.16. Solution Path T (vicw 2); frames 25 33

e |

e

S O R R N T T T T S T LU R T P e o NG T, LI A . - : p‘.::\ :
o o \ S $>. o “~ -q‘ - LS \.'.‘..' \ A uf A .._iln_ -, l’\\ -ﬂ\?‘_ W :\“5‘\',¢¥:-C‘if:'~:&¢::‘$ by
A e a T, A AN ALY o I

VO T T e — — oo . —

.

[42]

[3¢]

R T

[3¢]

=
|

£3s]
S
[33]

)]
]
‘ ™\
[37]
ﬂq
{ao]

Figure 1.17. Solution Path I (view 2); frumes 34 42

R Tt W LT A AT ANy ‘\}\" \.‘h\ \\-‘ \' \\ \ ‘_..‘:‘-'._s“...- - ,' 'I'F.:..‘.‘ L e
ey N

SN .
“{hhu\h s.'f\.‘_r\.‘-.."\.\ hERLHURLL N At et LT N

\

D)

7551

i4s]

et
) =
o « d
et = -
I Jg
K\ .
/\
~~
¥ g 2
[s =

Figure 118, Saiution Paih § {vic

w 2); frames 43 51

£y
[57]
[o0]
)]

=21
H
[56]
e
[59]
]
—_

[82]
|[35]
(58]

Figure 119, Solution Path | (view 2); frames 52 60

-

P

{62}

[suceosst)

/

1
i

-

~N

-y

-
L

ol

[64: (fineal configuration)]

-

o

Figure 1.20. Solution Path 1 (view 2); frames 61 64

Figure 1.21. A detail of the path for the L-Shaped example. The detail is in “time-lapse” format,
and shows a complex double rotation near the goal configuration.

Examples of “classical” find-path problems solved by our planner may be found
throughout this chap'er, and also at the end of chapter 2 (section 2.4, “Ezamples
of the Local Ezperts in Use”). See fig. 1.5-21, 1.22-28, and 2.7-21. In general,
geometric planning problems with more than three degrees of frecdom have proven
extremely diflicult to solve. We believe that in part, this difficuity has been due
to the unresolved issues in the mathcmatics of spatial planning. By solving these
problems for the six degree of frecdom case, and illustrating the results for the
find-path problem (which holds considerable intrinsic interest), we hope to provide

a geometric foundation which will make all gecometric planning problems feasible.

v ey, - - " = - L A LR PVE P
st 2t

Figuie 1.22. (3 Views of the “Puzzic ’reblem”). In this find-path problen, the i.-shaped object
musl. be moved around the diagonally-placed obstacle. Here the L-shaped object is shown in the
initial and goal configurations.

1.2. A Simple Example: How to Find a Path for a Point Amidst 3-D
Polyhedral Obstacles

We will begin by discussing an algorithm for navigating a single point amidst

polynedral obstacles in three-dimension Euclidean space 3. We then review the

configuration space transformation of Lozanc-Pérez (1983), which transforms the

problem of reasoning about the motion of a polyhedral object to reasoning about a

single point in configuration space. I the configuration space is isomorphic to R3,

then the point navigation algorithin can be applied directly to find collision free

paths. In this thesis we will gencralize the point navigation algorithin to work in

the configuration spacc for a three dimensional polyhedral object with six degrees

of freedom.

The six degree of freedomn plinner is based on the following analogy: sappose

<8

e b B b W LA A AT A R R
.{l\(m&ﬁ{a‘:ﬂ*-'\.-}‘:x‘:&‘:\":r-.‘(m" O

i PR S R

Aot
il“':'q.t..
N
k ‘!‘o::l'r:_
. 'l’q‘."f
v t‘t‘ ¥

LR

OO
l.‘?‘r]

(3]

(el

)

{2]

(5]

A

R
:‘o'g.‘n Of
¢ & i‘
R
RO
[

—
—
St

LY

Figure 1.23. Puzsle Problem, frames (1-8), view 1.

29

{s]

o
=
.
- ~
r~
<«
—
—
-
Lol
L—]

)

(71

{10}

Figure 1.24. Pussle-Problem, frames (7-12), view 1

=
O
j ﬁ\—“‘,
s/
N
=)
m%_‘“g
/ Mﬁ——
<
3
F
1]
g
=
<
=
:'! —
= ol

Figure 1.25. Puzzle-Problem, frames (1-6), view 2

31

M B TRCIAA AL R T e AL TR LWL . A CBLE ML M R e

TR LT UNNIMELA TLSUAR AL AL AL TMANNSARARTR" R A TAN T

) ~y
b~ o
> e
!
\ N\,
’ =
-~ -
fod o) _
<\ N
~— =
b z
Figure 1.28. Puzzle-1'roblem, frames (7-12), view 2

32

e L T A L W T N T VLWL B0 10 AW U 00 I W 07 R0, AT A T, . A0 LMWL LA WS WA L AL L LS R U

W) .
ata VY
{mmmmmxmm.‘_:vmmm,oJ‘om:ﬂ.\};x\.xm.a:-m:-.»:r.*o;xm.n.;r.e;.\,-:-.e. AFRLATLO AL W AR VNS

3}
Q]

Lo —~
= 2,

-~

-

it ?
E //
-r 7 o

: =7
® o

& —

=

L]

[

=

L § ~—

e <

[(=) e

Figure 1.27. Puszle-Problem, frames (1-6), view 3

33

Figure 1.28. Puazle-Problem, frames (7-12), view 3

34

¥
am&zﬁ@

N A L R A N e S A e A e !

we wish to find a path for a point in B3, avoiding collisions with polyhedral
obstacles, where each polyhedron is modeled as the intersection of a finite number
of half-spaces of R*. Onc solution wight be to move until the point comes in
contact with a polyhedron, and then to move around the obstacle by traversing the
cdge-graph on its boundary. (Refer to figure 1.39, ignoring the caption for now).
Ilach arc in the edge-graph is the intersection of two surfaces bounding half-spaces.
Even if the polyhedra are aliowed to overlap, the technique will still work since their
intersections have the same structure. Naturally, we will also need some technique

for jumping froia one obstacie to another.

To summarize, we can find a collision-free path for a point «wmidst obstacle

polyhedra in %3 through the closure of three operators:

The Point Navigation Opcrators

Operator (i) slides along the 1-dimensional edges, which lie in the intersections
of the obstacle planes;

Operator (ii) slides along the two dimensional obstacie planes, which contain
faces of the obstacle polyhedra;

Operalor (iii) jumps from one 3-dimensional obstacle to another.

We now review the configuration space transformation. Using this transfor-
mation in its simplest form, the find path problem in three dimensions without

rotations is reduced to the point navigation problem amidst polyhedral obstacles,

1.3. Conliguration Space

The configuralion of a moving object is a vector of paramecters representing
its combined translation and orientation, relative to a specified coordinate system.

For the classical Movers’ problem in the plane, a lypical configuration
I f YP 34

o SN
[P 0% W9, 2% Ve O

BT AR

kP FOA]

I

- r"}“-“. oV T Nt (\f_ LS -f_‘i'_ w‘\(‘..’_ {\(\f;'.::'.(,,' o, rh'n'_.. .

of\ oy pabath oo .r(- l-f o f.\' -'-"_" ‘-".-' <~

i
;
é

represents a displacement (translation) of (z,y), and a rotation by 0. (For example,
iinagine a polygon displaced by (x,y}, and rotated by 0 about onc of its vertices).

For the six degree of frecdom classical Movers’ problem, a typical configuration

X =(z,y, 2, R(©))

represents a displacement (translation) of (z,y, z), and a three dimensional rotation
R(©). The three dimensional rotation group is a three paramcter family; typical
representations of rotations include lluler angles, (Symon (1971)), spherical angles,
and quaternions (Hamilton (1969)). For example, if the Euler angles @ = (v, 0, ¢)
arc employed, then they determine a 3 by 3 retation matrix which functions as
R(©) in the rotation group. It is convenient to identify the rotation operator with

its parameterization, that is, to express X as

X = (I.- v, 2, ¢.- 01 ¢)

Using configuration space, reasoning about the motion of a complicated three-
dimensional body amongst obstacles may be transformed into reasoning about
a point in a six dimensional configuration space. The transformation described
by Lozano-Pérez (1983) cntails “shrinking” the moving object to a point, and
correspondingly “growing” the obstacles. In principle, the point may then be
navigated around the grown obstacles by means of the point navigation operators

(above).

In this thesis, the point navigation operators will be gencralized to the

six-dimensional conliguration space of the classical Movers’ problem.

In order to present our algorithm for planning in C-Space, it is necessary to
review the basics. We present an introduction to representations in confliguration
space at two levels: first, we present an intuitive discussion. Next, we present a
more dctailed, slightly more mathematically-oriented exposition. For the sake of
recadability, there is some redundancy in the sections. Those who are encountering
configuration space for the first time may wish to postpone reading the latter

scction for now.

hJ sTanl”

AV

gout

Figure 1.29. Thesc figures show an obatacle polygon B and a moving polyzon A. A must be
moved around B to the goal configuration. /

1.3.1. Representations ir Configuration Space: An Intuitive Treatment

Figure 1.29 is an example of the classical Movers’ problem in two dimensions,

obisct which must be moved from the start

A 3 Pl g
lb l-'J T ama - - L

Tl .
A1 35 & MovVi

R R Y P P
without rotation

configuration to the goal conliguration, around an obstacle polygon B. The start

Ut

and goal configurations may be cxpressed as two dimensional vectors of the form
(z, y) which represent the displacement of a vertex v; on A from a fixed coordinate
frame. The displacement is a rigid translatic of the polygon A. The C-Space of
this Movers’ problem is the space of two imensional translations, which is the
game as the Cartesian plane. Lozano-Pérez (1983) demonstrated a transformation
which shrinks A to the vertex vy, while inversely growing B. The grown obstacle for
B is a C-Space obstacle called CO(B). and is shown in figure 1.31. (We will discuss
the dectails of this transformation later). The problem of moving the polygon A

from the start to the goal is transformed into the problem of navigating the point

37

ol
-ala
o

Sl
S o 4
R i :
- .S -

v

5
- »

o

L4
£l

g
“l "J .

A

Figure 1.30. The c.dges end vertices of 4 aid 8.

vy around the C-Space obstacle shovn in figure 1.31.

Both A and ¥ are convex; nou-coniex objocts wre represented by overlapping
unicny of convex polyhedra. The C-Space obstacle CO(D) is constructed by
considering all feasible interactions of the edges and vertices of A and B. Eachi such
interaction generates a constrain! which is raznifest as an edge of CO(B). We sy
that an inferaction between a veriex of A and an cdge of U, or between wn edge of
A and a vertex of B, is feasible if there is some puve trapzlotion which can bring
the vertex and edge in contact without causing 41 arnd /2 te cverlup. For examgl,
the set of alt possible intesactions of A and 2 is the union of the two cartesian

producis

) t f [
{ehezat’-s} X {vy,vzeg,v;0)

Figure 1.31. CO(B), the grown obstacle for B in C-Space. The vertex vy must be navigated
around CO(B).

{Ulrv2,v3} X {6{,65.6;;»6; }

However, at the depicted orientation of A, only these interactions are feasible:

{ (”1: e{), (vl 1 eé), (elt ”(;)! (v2: eili)! (32: v-;): (v3! e'g)’ (63’ v{) 2

It is easy to visualize the translation that will bring any of these pairs into contact.

Furthermorc, note that (for example), no translation can bring v in contact with

€g.

Now imagine that A is allowed to rotate about v;. At different orientations,
there will be different sets of feasible contacts. We say that the constraints associated

with feasible contacts are applicable constraints. It should be clear that at any given

39

RS

AR i AP AR U e

DA AN oo

<L TR ST PR N R |
RV YR R 0

- ¥
Y A N, Y NV N A

od x e g X J
DA A R

A A

7 4

Figure 1.32. TO(D) can be represented as the intersection of 7 half-spaces, whose boundaries
contain edges bounding CO{B).

orientation, only certain constraints will be applicable. The orientations for which a
given constraint is applicable form its applicaoility region. The applicability regions

for cach constraint in this problem are angular sectors of the form [6, < 6 < 6,).

ange articular contact

R .
of angles

=
=
[¢{]
L}
a
a
”
ot e
A
4l
L)
o
-t

This simply means that ¢ r
is feasible. This range of angles may be geometrically visualized 2s a sector of a

circle.

When A is allowed to rotate; the geometry of CO(B) changes as 6 varies, and
as the set of applicable constraints changes. As the edges and vertices of A rotate
about vj, the constraints they generate sweep out ruled surfaces which bound
CO(DB) in a three dimensional C-Space. (The C-Space is three dimensional, since
A now has three degrees of freedom: z, y, and 0). At any fixed orientation 6, an
z-y slice of CO(D) is a polygon, called slice{CO(B), 6y). Figure 1.31 shows such a
slice at the depicted orientation of A. With cach edge of slice(CO(R3), 0) there is an

associated half-plane containing slice{CO(B), 0}, whose boundary contains the cdge
(see figure 1.32). The intcrsection of these half-planes is exactly alice(CO(D),0).
As 0 changes, difierent half-planes are used to construct slice(CO(D),0). By (1)
deriving the line equation of the boundary of these half-planes in terms of the
orientation #, and (2) by determining the applicability region for each hall-plane
constraint, we can characterize slices of the C-Space obstacle slice(CO(D), 0) as 0
changes. Thus we can characterize the three dimensional C-Space obstacle CO(B).
This representation may be used to develop planning algorithms for the Movers’
problem with two translational and one rotational degrees of frecdom (sec Brooks

and Lozano-Peréz (1983)).

In this thesis we develop such a representation for the six degree of frecdom
Movers’ problem. There are several problems which must be solved. Because
the structure of the rotation group is more complicated in three dimensions,
the applicability regions for constraints in a six degree of frecdom C-Space are
geometrically much more complicated. While in twe dimensione the applicability
regions may be visualized as sectors on a circle, in three dirensions they are
complicated three dimensional manifolds on the projective 3-sphere. It is iinportant
to characterize these regions, since they specify where a constraint is applicable.

We will discuss some of the other problems presently.

Generalizing the Point Navigation Opcrators Requires Solving

Representational Questions

In order to generalize the point navigation operators to the C-Space of the
classical Movers’ problem, we must be able to characterize the surfaces of C-Space
obstacles, and the interscctions of these surfaces. The first two operators, then, must
slide along the C-surfaces and their intersections. In the next section, we discuss some
of the representational issues involved in developing such operators. For example,
when rotations are allowed, the C-surfaces are curved. In the six-dicaensional space
of the classical Movers’ problem, each C-surface is a five-dimensional submanifold of

C-Space, and the intersection of two such surfaces i 1 four-dimensional manifold.

Thus it is possible to slide along such an intersection with four degrees of freedom.

1.3.2. Representations in Configuration Space: A More Formal Treatment

In this section, we present a somcwhat more abstract formulation of
representational issues in C-Space. Some readers may wish to postpone reading this
section until later. We will proceed as follows: first, we will outline an important
representational question which must be solved in this thesis. Next, we discuss
how to represent volumes (such as C-Space obstacles) in C-Space. In the course
of this discussion, several terms will be defined in context by means of intuitive
descriptions. At the end of this scction, under the heading Working Definitions, we
will scummarize and formalize the deiinitions to the extent that will be required in

chapters 1 and 2.
The Domain Question

Until now, geometric planning probleins with more than three degrees of
freedom have proved resistant to solution.! Yn this thezis we provide such an
algorithm for find-path with six degrees of freedom (the classical Movers’ problem).
The resistance of these problems has largely been due to unrescived mathematical
issues and questions relating to the structure of configuration space and to the nature
of C-Space constraints, (although for fine-motion and planning with uncertainty

there atc of course additional issues).

One fundamental theoretical problem for high-dimensional configuration spaces
may be stated as follows: ir a configuration space C with rotations, cach C-Space
obstacle may be represented by the intersection of a finite number of half-spaces.
Each half-space, in turn, is defined by a real-valued C-function on C-Space. For
example, the half-space might be the sct of configurations where the C-functior
is negative. IHowever, cach C-function is a partial function on €, whose domain
is a complicated region in C-Space. This greatly complicates the representation
for C-Space obstacles and C-surfaces (see figure 1.36). Morcover, until now the
domains of the C-functions werc unknown for all but the one-dimensional rotation
group. One of our first tasks will be to derive the domains of all C-functions for

the classical Movers’ problem with six degrees of freedom.

'Howcever, previous work hay provided an existence proof of w polynomial time algorithm for
certain spatial planning problems, In addition, there are approximate algorithins for some of these

problems, See our review ol previous work,

There are several related problems, for which we also present solutions. This
allows us to construct a complcte geometric representation for the configuration space
of the classical Movers’ problem with six degrees of [reedom. This representation
iapacts all the geometric planning problems we have discussed, and extends

naturally to Cartesian Manipulators.
Representing Volumes in Configuration Space

The dimensionality of configuration space is the number of degrees of freedom
in the parameter space, i.e., the number of degrees of freedom available to
the moving object(s). Thus the classical Mover’s problem in the plane has two
translational and onc rotational degices of freedom, while in three dimensions it

has three translational and three rotational degrees of freedom. The configuration

spaces for these problems are threc and six dimensional manifolds, respectively.
As the number of degrees of freedom increases, a geometric planning problem
becomies harder. There arc several reasons for this. First of all, when rotations are

allowed, configuration space ccases to be [uclidean, and the C-surfaces become

curved. Furthermore, the non-commutativity and multiple-connectedness of the
three-dimensional rotation group are classical difficult issues in mathematics. In
addition, it can be shown that the computational complexity of spatial planning

grows expencntially with the dimensionality of the C-Space.

A fundatmnental issue for geometric planning algorithms is: how should C-Space

obstacles and surfaces be represented and computed?

A volume in a configuration space C may be represented by the intersection of Wi
a finite number of half-spaces (sec figure 1.33). Each half-space may be defined via
some smooth, real-valued function function on C,
f" :C— R

For example, (fig. 1.34) suppose fi(z,y) = az + by + ¢, for some constants a, b,

and c. The kernel of f is the line where f(z,y) = 0. The halfspace k] is the

portion of the plane where f(z,y) is negative. C-functions such as f; arise in the
N

two dimensional Movers’ problem, at a fixed orientation. }::_’
e
P!

13

CA
LN

i °

“
o

Figure 1.33. The region CO is the intersection of the half-spaces A7, A7, k', and & . & '

In general, the (closed) half-space h] is the sct of all points in C where f; is

negative-valued or zero:

Fa
)
()

i(v)

o
I
f o
Qe
m
[@Y

The common intersection of a number of such half-spaces can yicld a volume in
C. Lozano-Pérez (1983) showed how C-Space obstacles can be modeled in this
manner, and gave the form of the functions f;. Note that cach C-suiface lies
within the kernel of some constraint f;. Fine-motion strategies and algorithms for
planning with uncertainty need tc compute the normals and tangent spaces to
these C-surfaces. The normal can usvally be derived from the gradient V f; {this
requires placing an appropriate Riemannian metric on the tangent space). When

a real-valued function f; on configuration space is used to describe constraints in

44

‘_ e e e e e e Mt MR N LA AN RS EEA AL LiaAE LS. AY W

Figure 1.34. Lxamplc of a C-function f; in the plane.

that C-Space, (i.e., C-Space obstacles), we call it a C-function. The form and

interpretation of C-functions are presented later.

45

~.. kt.,

!.'Q

ey

[”/7

Figure 1.35. INustration of the classical Mover’s problem in three dimensions. /M is an obstacle,
and A is an object which must be moved around 3. A, 8, shows A in the start configuration,
and A, g, shows A in the desired goal confliguration. € is the polyhedron whicl is the C-Space
obstacie from H for A at orientation 6). AL oricutation 6°, the C-Space obstacle from B3 is a
diferent polyhedrou, which we show as C'.

Ezample: (See figure 1.35). Consider the Movers’ problem for a three dimensional
polyhedron A which can translate bat not rotate amidst polyhedral obstacles. The
configuration space for A is a three-dimensional vector space of translations, which
it is convenient to identify with R%. Each constraint f; will be linear on ®%, and
the kernzl of f; is a plane. Bach such plane bounds a C-Space obstacle (such as C
or C' in figurc 1.35). The C-Space obstacles are possibly overlapping polyhedra in
R, The find-path problem in the transformed space is that of navigating a point
past the union of these C-Space polyhedra (sce figure 1.39).

In this formulation there is a fundamental underlying assumption: f; is a total
function on C, that is, the domain of f; is all of C. In the example this is not a
problem, since the domain of each linear C-function is the entire space. A function
whose domain is a subset of C is called a partial function on C. When rotations are

allowed, C-functions become partial functions.

47

NSO RO S NN NN P
A "n"Q‘. i ‘M'D\-k‘kf..‘ AN LI IR VN s s M A NN A NN M PGS

A

\2gv “‘3 "v".l |

7:3

\n"«;\ y ‘_ ’

l
! Rer(ty
‘ (A N

Figure 1.26. The functions fy, [x, and [are used to describe the half-spaces b7, h;, and NN
h;. If all functicns arc total functions on the plane, then the interscction of the correaponding ‘ﬁ
half-apaces will be the the rectangloid region E. tlowever, suppose that f; is a partial function, al.:
whose doimain is restricted to the half-space where y is positive, We say that f; is net applicable ':tzg‘ :
below the line y == 0. Furthermore, we assume thal points outside the domain of j, are within :' E
k7. In this case, the intersection k7 VA N hy is triangloid region 7'

18 ! b$l’ R

Figure 1.37. The two-dimensional classical Movers' problem: An pbstacle polygon I and a moving
polygon A. A is shown at a particular orientation, 6.

Why do C-Space constraints become partial functions when rotations are
introduced? Consider the classical find-path problem in two dimensions, for a
moving polygon A which can translate and rotate in the plane (sec figure 1.37). A
configuration of A may be represented by three parameters, (z, y,). The surfaces of
the C-Space cbstacle for B arise from each of the feasible contacts (or snteractions)
between the edges and vertices of A and B. Thus the constraint functions {which
we have been calling f;) are defined by considering pairwise interactions of edges
and vertices of A with vertices and edges of B. Every such pair such as e, and v
will generate a smooth, real-valued C-function f,, ,, on configuration space.? Each
constraint is designed such that their conjunction enforces a disjointness criterion
for A and B. llowever, not all interactions are possible at any given orientation.
For example, at the depicted orientation 0, of A, edge e; can interact with vertex

v, but edge e; cannot: at orientation @;, no translation can bring ¢; in contact

2For the form of the C-functions, sce chaplers 3 and 4,

19

with v while maintaining the disjointness of the interiors of A and B. We say the
associated C-function f,,, is not applicable at orientation 0;. In other words, no

configuration

(z,v,00) € R?* X {0, }

is in the domain of f.,,. Each constraint f, ., is applicable only at certain

oricntations, and hence each can be considered a partial function on the C-Space.’

In three dimensions (see figures 1.35 and 1.39), the surfaces of the C-Space
obstacle for B arise from each of the feasible contacts betwcen the vertices, edges,
and faces of A and B. By analogy with figure 1.37, it is clear t.hat not all of these
interactions are feasible at any given orientation. Thus the C-functions describing
C-surfaces for spatial planning with six degrees of freedom must also be partial

functions.
Working Definitions: Review and Summary

‘We now summarize and formalize the key definitions and concepts required in

this chapter and the next:

Configuration Space: (Formal definition) Configuration space is the product
spacc of the space of translations and the space of rotations for an object. In three
dimensions, the space of translations is Euclidean 3-space RN and the space of
rotations is the 3-dimensional rotation group or Special Orthogonal Group, SO(3).
SO(3) is isomorphic to the intersection of the Special Lincar Group (the set of
all real 3 X 3 matrices with determinant 1) and the Orthogonal Group (which
may be thought of as the set of matrices with orthonormal rows and columnns).
The orthonormality of rows and of columns are equivalent conditions. SO(3) is
isomorphic to P3, the 3-sphere S3 with opposite points identificd. (P2 is also known
as the projeclive 9-sphere). S? is isomorphic the group of unit quaternions. Vor the
classical Movers’ problem we will employ configuration space, ®* X SO(3). We will

denote the classical Movers’' Problem with three translational and three rotational

3See Brooks and Lozano-Perée (1983) for a discussion of the domains of C-functions for the two
dimensional find-path problem with rotations.

50

degrees of frecdom as 6 DOF. In practice, we will represent rotations as members
of a three-parameter family (for example, Euler Angles), but we must keep in mind
that they paramecterize an isometry and that R X SO(3) is not a vector spacc.
If the Euler angles (,0,¢) arc ecmployed to represent the orientation of a rigid
polyhedral body, a typical configuration X in R®* X SO(3) has the form

X = (ZL‘, Y, zr¢:0r ¢)'

We will sometimes adopt the notation

X = (7‘, 9),

where r denotes a three-dimensional translation vector, and © some three
dimensional rotation. This sccond notation is independent of the particular
representation chosen for rotations; the first isn’t, If Euler angles are employad, we

may think of © as the “vector” of Euler angles, (v, 8, ¢).

C-Space Obstacle: (Informnal definition) Configuraticn space obstacles are
(possibly overlapping) six dimensional manifolds (with boundary) which correspond
to sets of configurations that would cause collisions of the moving object with real

space obstacles.

I'ree space: Thea free space is that subse! of C-Space which lies within no

C-Space obstacle, The free space will be denoted F.

Applicability Sci: (Informal definition) Refer to figures 1.29-32 and 1.33-38, and
recall that C-Space obstacles are represented by the intersection of a [inite number
of half-spaces. (To be formal we should call therm half hyperspaces). The boundary
of cach half-space is a C-surface, and centains a boundary patch of the C-Space
obstacle. Ilach G-surface S may be expressed as the kernel of a real-vadued function
f on C-Space. The C-function f is negative on the obstacle side of the half-space

C-Space obstacle, and positive on the other halfl. In the literature C-functions have

been called constraints, since they express constraints on the possible motions for

an object. A surface parallel tc S is called a level C-surface, and represents the set
of configurations where f has a certain fixed value. This value is termed the level
of the level C-surface. The boundary of the {-S5pace obstacle is a special case of
level C-sutface, where the level is zero, We have scen that at any given orientation,
only certain C-functions (and their associated C-surfaces) are applicable. This is
because only certain contacts are feasible between the faces, edges, and vertices
] which generate the C-functions. We call this set of C-functions the applicability set.
For example, in 1.29-32, at the depicted orieistation the applicability set is

{(v1, e_{), (v1, e':’.)» (e1, U';)! (v2, eé)r (e2, v,;), (vs, elll)’ (834, ”{) }-

(Actually, the applicability set is the set of C-functions generated by these

vertex/edge and edge/vertex pairs, but siace there is a nne-to-onc correspondence

between the generator pairs and the C-functions, we can write it this way). In later

chaptery, we will demonstrate algorithing for computing the appiicability set, and

for decomposing rotation space into =sgions where the applicability set is invariant.

Redundant and Non-redundant Constraints: (Informal definition). If a config-

uration X is in free space, the set of constraints which is (localiy) relevant to motion

planning from X is a subsct of the applicable, positive-valued C-functions at X.

However, the value of a C-function does more than merely indicate which side of a

C-surface X is on. A C-function’s value represents the transiational distance to that

v

surface. Thaus, C-funciions provide a colicciion of pseudo-metrics on C-Spuce. Using

these metrics, it is possible to order C-surfaces by their closeness to a configuration

X (simply sort the C-functions on their value at X). We say that a C-surface is

redundant if it is subsuined by a nearer, intervening constraint. In figure 1.38, for

cxample, f and g are non-redundant constraints at X, but k is redundant since it

is subsumed by f. It is useful to determine the sct of non-redundant constraints at

X siace this is the ~mallest set of constraints that are locally relevant to motion

placning. We proviae a formal definition of redundancy in chapter 3.

Robot, Moving Objcct, and Piano: All of these terms have been employed in

the literature to refer to the moving object for which a collision-free pach must

Y
i 4 AR RN A Pl Sl . AL ~ L T ng VR T e " L L v "l TRAMTERAR AN e " " il T e 4 LR Y o,
O I A O T N e S o o o S G B R N R G, o p

YO N N AV IV . W
[)

cserm =
§)

-F---.-.-—_--—--———.-

'
'
[}
' .
'
'
4
L]
[

Figure 1.38. h is a redundant constraint.

be found. Our moving object is modeled as the possibly overlapping union of a

finite set of couvex polyhedra. The union is rigid, but not necessarily convex or
connected. The moving object has three translational and three rotation degrees of

freedorn. To avoid monotony, we may employ the term robot te refer to the moving
he tha H

object, The terminology is justified in part by the fac

straightforwardly to Cartesian manipulators,

53

AT AT AR A AT R A A YA AT T W T WL 2
A A DA A LT oA AR C VO N WA

The Research Agenda of this Thesis

A Brief Qutline

I. Computational Theory

Paths can be found in C-Space by the closure of three operators:
(i) slides along 1- to 4-dimensional intersections of level C-surfaces;
(i1) slides along 5-dimensional level C-surfaces;

(i11) jumps between 6-dimensional obstacles.

. Representation and Algorithm 1

Scarch Algorithm Employing the Three Operators

m

Solve the Intersection Problems.
Develop a represention for the interscction manifolds.

Ll

Solve open questions about the structure of 6DOF constraints. Derive and
represent structural properties of the constraints, for example, the domains of
defining partizl functions. Develop decomposition algorithms.

HI. Tinplementation

linplement the 6DOF planner.

V. New Theoretical Results

The structure of 6DOI" constraints: Theorems on the domains and domain
topelogy of the defining partial functions,

Theorems on the applicability decomposition.

The C-Voronoi Diagram (CVD).

The Equivalence Theorem for intersection manifolds and the CVD.

Criteria for designing/integrating local and global planning alporithms.

1.3.3. Generalizing the Point Navigation Operatocs

Consider a thiee-dimensional configuration space containing smooth, curved
C-Space obstacles. Observe that the point navigation cperators will work even if
the surfaces are curved and complicated, as long as we can find iheir intersections.
For the two-dimensional Mover's problem (for a polygon allowed to rotate and
translate in the plane), we emnploy a configuration space R2 x S'. R? is the space of
two dixﬁcnsional translations, and S! is the unit circle, on which one-dimensional
rotations may be represented. C-functions are of the form f; : ®2 x S! — R and
are valid within some sector A; of S!. A C-surface is the set of configurations
where f; is zero. Although these C-functions are complicated expressions containing
trigonometric terms of the formm zcos@ and ysind, it is possible to solve two
such C-surfaces simultaneously to obtain an intersection curve in R% X S! which -
is parametric in 6 (these intersection manifolds are derived in chapter 4). The
analogy to navigating a point through a polyhedral environinent should now become
clear: the faces of the polyhedra correspond to C-surfaces in M2 < S! and the
edge-graphs to the graph of C-surface intersections. By searching the graph of

C-surface intersections we can find a path in configaration space, if one exists.
Planning in a Six Dimensional C-Space

Qur planner for a six dimensional C-Space is based on the idea of moving along
the interscctions of level C-surfaces in free space, parallel to the boundaries of C-
Space obstacles. In the example above, the coincidence between the dimensionality
of configuration space and Euclidean space was screndipitous: edges on polyhedra
corresponded to curves in ®2 X S', and faces to 2-dimensional surfaces. However, in
a six dimensional C-Space, the C-surfaces are 5-dimensional and their intersections
are 4-dimensional sub-manifolds. Intuitively this means that the set of possible

motions while complying with two constraints is a four-parameter family.

Our idea is as follows: Suppose we could slide along C-surfaces (see figure 1.39).
In addition, suppose we could intersect C-surfaces to construct a lower dimensional
manifold in C-Space which contained paths along (or around) the boundary of
C-Space obstacles. By sliding along C-surfaces, and by sliuing along the intersection

of C-surfaces, we should be able to devise an algorithm which can circumnavigate

[
(<1}

T

71y, 8,

Figure 1.39. We can represent the configuration of a polyhedron A by a pair, (T, @), where T' ia
a translation of A and © is a rotation of A. The problem of moving A frem confliguration (r4,©1)
to (r,,0,) is transformed to the problem of navigating a configuration point, r, past C, which
is the C-Space obstacle due to B. §; and S; are C-surfaces bounding C. The configurations ¢;
lic on the bounds y of C, while d, is in frec-space. Two trajectories around I} arc shown. Note
that the path scgmients (cg, (g, ©2)) and (dy,(r;, 62)) must also include a rotation. (The actual
reference point is ab the centroid of A, but for the purposes of cxposition, we have placed it at a
vertex as shown).

C-Space obstacles. (Of course, we also need a way to plan motions which “jump”

from one obstacie to another).

Ezample: Figure 1.39 shows how such a planning algorithm might work. The
planner moves through free-space from (r,, ©1) until it strikes a C-surface S) at
c;. From ¢; a path is found towards ¢3 sliding along the C-surface S). We say the
planner slides along S; to ca. Configuration cz lies on an intersection manifold of
the C-surfaces S; and S». The path segment (c2,c3) slides along this intersection
manifold, which lies on the boundary of C. A path (ez, ¢3, ¢4, ¢5, cg) is planned along
the graph of intersection manifolds on the boundary of C. From cg we leave the

boundary of C, and translate and rotatc through frec-space io (rg,63). This path

56

is an idealized example of planning along C-surfaces and intersection manifolds of
C-surfaces. The implemented planner finds a path similar to {(r, ©1),d;,(ry, ©2))
(see chapter 2). Tke path segment ((ry, ©),d;) is parallel to the C-surface S|, and
we say that it slides along a level C-surface for S). The path segment (dy,(r,, ©))
is along a level C-surface for Sa. These level C-surfaces intersect along a manifold
in free-space containing d; (imagine extending the faces S; and S3 beyond the

boundary of C until they intersect).

We will derive the necessary mathematical theory and tools relating to C-
surfaces and their intersection manifolds, and present algorithms for moving and
planning paths in C-Space. Some of the issues we will address include:

(i) What is an appropriate representation for constraints ir a six dimensional
C-Space?

(it) How do we plan motions using constraints whose domains change with the
motions?

(iit) How can trajectories in C-Space be intersected with C-surfaces whose domains
change along the trajectory?

(iv) How can intersection manifolds be constructed in C-Space?

(v) llow are motions planned which slide along C-surfaces and intersection manifolds?

It is useful to develop a terruinology for evaluating algorithms and repre-
sentations for geometric planning problems. An algorithm employing an approzimate
representetion does not characterize the constraints exactly. A complete algorithm

(for a given resolution) is guaranteed to find a sclution if one exists (at that

ment of a complete representation. A brute-force algorithm tries to lind a selution
through exhaustive search. Heuristic algorithms fall into two (overlapping) classes:
heuristically complete, and heuristically fast. Sce also the review of previous work

(below).

The implemented algorithm we present for the classical Mover’s problam with
six degrees of freedom employs a complete representation of the configuration space

constraints, and a complete scarch algorithm (for a given resolution).

1.4. Local versus Giobal

Local algorithms for the find-path problem examine local constraints in some
neighborhood of real space or in C-Space, and proposc motions based on the
geometry of the neighborhood. Typically, local algorithms are implemented as
searches, and the examination of constraints near a scarch node leads to the
selection and application of some local operator to move the robot in space. I'or
example, in our algorithm for the six degree of [reedom Movers’ problem, the local
constraints correspond to the geometric structure of C-surfaces in a neighborhood,
and local operators consist of motions along C-surfaces.! In general, a local planning
algorithmn will be complete if (1) the closure of the local operators is complete for the
arcwise-connected components of C-Space, and (2) each local operator attempted

ensures that a collision-free path exists between configuraticons in the search.

Ilowever, our observation has been that in general, even complete local
algorithms can get lost examining irrelevant local constraints. In particular, without
adequate knowledge of the conncctivity of a workspace and the classes of paths
it contains, such mcthods may choose impossible or ill-advised candidate paths:

hence they may take a long time to converge.

A global find-path algorithm attempts to construct a model of the connectivity
of the workspace. We believe that the connectivity cf configuration space can be
inferred from the conncctivity of real space. Good hypotheses about the channels,
or classes of paths through free-space can serve as guidance for a more detailed
method. While there exist several proposals for global approaches to the Movers’
problem, in Donald (1983a) we attempt to formalize criteria for the design of such
algorithins. A global planner based on these criteria was implemented, and coupled

with a complete local algorithm to form an integrated planning system.

Channels are an encoding of free-space corresponding to the classes of paths
within an environment. An implementation exploiting this global model of the
connectivity of free-space has been able to solve two dimensional find-path problems
in several minutes which formerly took many hours. The algorithm is essentially

FPhis example is ilusteative and typical of the local constraints and operators. The implemented
planner is more compiicated, as we shall see.

a problem-solving strategy using a homcomorphic reduction of the search space.

See Donald (1983a) for a description of the channel algorithm. In appendix I,
we discuss the design and integration of local and global planning algorithimns in

R x SO(3).

1.5. Review of Previous Work

1.5.1. Intyoduction

In this section we review previous work on geometric planning problems.
We also give a formal characterization of completeness for the spatial planning
problems. A survey of robotics issues in robot motion planning can be f{ound
in Brady, et al. (1980). For related work on the mover’s probierﬁ, see Brooks
(1983a), Lozano-Pérez (1981, 1983), Lozano-Pérez and Wesley (1979), Brooks and
Lozano-Peréz (1983), Schwartz and Sharir (1982a), Reif (1979), Moravec {1979),

]

-

b4

H

;
Ly

H

1

3

3

]
o
oy

]

Some issues in automated structural design are addressed in Donald (1983b). For
a review of geometric modeling techniques, see Baer, Fastman, el al. (1979) and

Requicha (1980).
1.5.2. Complexity-Theoretic Results

In seminal work on the compiexity of the Movers’ problem, Reif (1979) has
shown that the motion planning problem for a robot with an arbitrary number
of degrees of freedom in the form of arm-like linkages is P-Space-hurd. Hopcroft,
Joscph, and Whitesides (1982) have shown similar results for planar manipulators
with = linkages. In genecral it has been found that with n degrees of freedom, the
problem is P-Space-hard. appily, Schwartz and Sharir (1682a) have demonstrated
the existence of a polynomial-time algorithm for the Movers’ problem with fixed
degrees of freedom, where the size of the problem is measured in the number of
obstacle faces in the environment. The algorithm of Schwartz and Sharir (19824)

fur the classical Movers’ problem is unfortunately of time complexity

O(‘n'z" {'6)

5y

where n is polynomially dependent on the number of faces in the environment, and d
iv the number of dcgrees of freedom. For 6 degrees of freedom this becomes O(n109).

Hence it serves chiefly as an existence proof for a polynomial-time algorithm.

The coordinated motion problem has also been given some attention: Schwartz
and Sharir (1982b) address the problem for 2 and 3 circular bodies moving amidst
polygonal obstacles in the plane. The coordinated motion system has degrees of
freedom cqual to the sum of the degrees of freedom of the moving bodies. These
results lead us to expect exponentia! behavior from all motion-planning algorithms
as the number of degrees of freccdomn grows. For these reasons we will confine
ourselves to the classical Movers’ problem, which has 6 degrees of freedom in

3-dimensional space.

Reif (1979) also sketches a polynomial-time algorithm for the classical Movers’
problem, but it appears incomplete in that it ignores constraints arising from the
interaciions of faces of the moving vbjeci with vertices o

consider edge-edge interactions in 3 dimensions.

1.5.3. Work in Computational Geometry and Robotics

The foundations of our approach lie in Lozano-Pérez (1981, 1983), Lozano-Pérez
and Wesley (1979) and Schwartz and Sharir (1982a). The problem of moving a

complex polyhedral object among obstacles is transformed to the problem of finding

Brooks and Lozano-Peréz (1983) have implemented a general path-finding
algorithm for a polygonal object in the plane with two traunslational and one
rotational degrees of frecedom. Their planner uses hierarchical subdivision of the
3-dimensional configuration space M2 X S!. The subdivision algorithm has been
specialized to the particular geometry of the Movers’ problem in ®? X S! and
while in principle it is exiensible to the 6 degrec of freedom problemn, its space-
complexity in logh dimcensions is tkely to be uwnatisiztive. A probier with the
hicrarchical subdivision strategy is thut it ias tro:hle exploiting coherence in
C-Space. Its spatial taxonomy is restricted to filled, empty, and mixed, in a

world where almost everything is mixed. Mixed ceils are subdivided until an empty

60

region is found. Ilowever, it is hard to propagate this useful information to guide
the search through nearby, unrefined cclls in the subdivision. One goal of the
algorithms and representations in this thesis has been to exploit coherence in the
configuration space. The intuitive appeal is that the interscctions of C-surfaces “go
somewhere useful” (i.e., around the obstacles). We will adopt an approach which
exploits the coherence of C-Space obstacles by moving along the interscctions of

high-dimensional C-manifolds® parallel to the obstacle boundaries.

Lozano-Pérez (1981) has described approximate solutions for Cartesian manip-
ulators with 6 degrees of freedom (in principle] which consider 3-dimensional
slice-projections of Configuration space. In practice thesc approximations are only
reasonably accurate for Cartesian manipulators with 4 degrees of freedom. In
principle, the C-Space constraints on motion defined by Lozano-Péres (1983) can
be extended directly to a 6 degree of freedom planner; indeed, this is our starting
point. IHlowever there are many interesting and complex problems to work out (see
Brooks (1983b) for another discussion of these problems). In particular, there are

many unresolved mathematical details for the 6 degree of freedom case. Given

the mathematical model, there still remains the issue of a complete planner which

exploits the model.
1.5.4. Global Methods

Global methods for path planning attempt to construct a model of the
connectivity of free-space which can be related to the Voromoi diagram (see
Drysdaic (1983)). In particular, 3rooks (i083a) has impicmenied a 2-dimensional
path-planner which models the free-space as an overlapping union of Generalized
Cones (Binford (1971)). Each cone provides oricntation constraints on motion within
the cone, and these constraints arc intersected to find a translational path along the
cone axes {called spines) interspersed with rotations at the spine intersections. This
work was extended to a six-link manipulator for moving payloads with 4 degrees
of freedom (Brooks (1983b)). The extended algorithm uses the same cone model,

but sweeps cach conc vertically to build prisms at horizontal slices through the

workspace. This mecthod works well when the payload (or polygon) is small and

2A C-manifold iy i manifold in 2 conhiguration spaee.

61

I N R R SR I Rt 1 R S o R R S L T N R S A L N ST P

A e MRS ", R R O L R A
! A N R M S N N R T P R SR P P O L PR Y PR NG T PR U RN

convex in a relatively uncluttered obstacle environment. It is not at all clear how
to extend the algorithm to large, non-convex moving objects, or how to consider
more than one rotational degree of freedom at a time. Nevertheless the concept of
computing “freeways,” or “channels” through free-space is attractive in that it can
provide global guidance to local algorithms (such as C-Space mecthods), and can

enumerate good hypotheses about candidate paths through complex workspaces.

Using ar approach called retraction, &’ Dinlaing and Yap (1982), é'Dlinlaing,
Sharir and Yap (1982) construct a Voronoi diagram for a two-dimensional workspace
and consider moving simple objects (a disc, a line-segment) along it. This technique
was mentioned by Brooks (1983a). It has not yet been cxtended to polygonal objects
or 3-dimensional cases. We will address this issue by considering Generalized

Voronoi Manifolds.
1.5.5. Approximation and Complcteness

Plauning problems have two components: characterizing the constraints, and
scarching for a solution which satisfies the constraints. One attempts to achieve a
complete (in some sense, “exact”) characterization of the constraints, and a complete
scarch algorithm for the representation. Since the Mover’s problem is a continuous
mathematical decision problem, we must in general consider a discrelized version of
the problem (sec Reif (1979)), for example, we might represent the polyhedral input
models as systems of linear inequalities within a fixed accuracy €, with 0 < € < 1.
In fact, there are two kinds of resolution limit, Any algorithm which employs reza!
arithmetic has a resolution limited to the machine precision. (Schwartz and Sharir
(19822) employ rational and algebraic numbers instead). Foz the find-path problem,
we are interested exclusively in the physically realizable paths, that is, unose paths
lying entirely within open sets of free space. The resolution limit Reif mentions is
essentially a bound on how small an open set can become before it is no longer

considered open. The open set resolution limit is typically greater than the machine

precision.

Almost all find-path search algorithms are complete only to this fixed resolution;

the notable exception is Schwartz and Sharir (1982a), which appears to be

scarch-complete and resolution independent. We should stress that for a complete

representation, the resclutien-dependence is in practice not a severe restriction.
However, the cffect of a coinplete search algorithm running on an approximate
characterization of the constraints is not clear. In principle, in case of search failure,
it is sometimes possible to refine the approximation and redo the search untii a
path is found. This possibility has rarely been exploited however, and introduces a
number of unpleasant technical and conceptual issues. A complete scarch running
on an approximate representation will in general result in an incomplete algorithm.
For these reasons we would prefer a coinplete characterization of the constraints

coupled with a complete search algorithm.

We will place this thesis in the contexi of previous work by considering the
following criteria:
(i) For what degrees of freedom does the algorithm apply?
(ii) Is the representation (the characterization of the constraints) complete?
(iti) Is the search complete (at a given resolution)?
{iv

Has the algorithm been im

Approximate Representations

Much of previous work has focused on approximate characterizations of the
constraints. Approximate representations may (1) artificially restrict the degrees of
freedom in a problem, (2) bound objects in real-space by simple objects such as
spheres, or prisms with parallel axes, while considering some subset of the available
degrees of freedom, (3) discretize configuration space at certain oricntations, or (4)
approximate swept volumes for objects over a range of orientations. Such restricted
planning systcins may lose solutions which require exploiting all six degrees of
freedom. An approximation of the obstacle environment, robot modcl, or C-Space

obstacles can result in a transformed find-path problem which has no solution.

Some approximate algorithms-for example, those of Brooks-run quite fast
for the class of problems that they address. In general, speed has bcen a
motivating factor in the design of these approaches. We also obscrve that some
approximate methods were motivated by the difficulties of modeling constraints in
a full 6-dimensional C-Space. These dilficulties in turn stemmed from unresolved

mathematical problems relating to both C-Space itsclf and to the structure of

63

-
-
o
-

LI P ALY 0
el e
| S
-

C-Space constraints. However, even with a complete mathematical model in hand,
we are stiil confronted with the problem of devising a complete planner which

works using the full set of constraints.

The configuration space of the three dimensicnal classical Movers’ problem with
six degrees of freedom is R3 X SO(3), where SO(3) denotes the three-dimensional
rotation group. In this thesis we first complete the mathcmatical framework for the
conﬁgur-at.ion space N3 X SO(3) and present solutions for some heretofore unsclved
problems. This foundation then allows us to proposc and construct a complete
planner exploiting the full set of constraints and 6 degrees of freedom for motion
planning in R X SO(3).

In this section, we characterize the completeness of previous'work. Unless noted,
search-completeness is resolution-dependent. Schwartz and Sharir {1982a) describe
coinplete representations and complete (unimplemented) search algorithms for 2D
and 3D. These theoretical algorithms appear to be resolution-independent. Brooks
and Lozano-Peréz (1983) describe complete representations and scarch algorithms
for the problem in R X &!. Lozano-Pérez (1981, 1983), Lozano-Pérez and Wesley
(1979) give approximate representations (except for translation) with complete
search algorithms for R2 X S! and R X SO(3). These approximate representations
also model Cartesian manipulators. Most algorithms for % X SO(3) can be extended
for Cartesian manipuolators in a similar manner. For translations, l.ozano-Pérez’
algorithms are complete to the nachine resolution. Brooks (1983a) provides an
approximate constraint characterization with a complete search algorithm for
R* X S'; Brooks (1983b) extends this for a linked arm carrying a payload with
degrees of freedom R X S1. A significant contribution of Brooks was the addressing
of the issue of jointed arms. The open set resolution limit for the Voronoi methods
(for simple objects in two dimensions) is no larger than the machine precision.
Udupa (1977) and Widdoes (1974) uscd approximate representations and incomplete

scarch algorithms in addressing find-path for jointed arms.
In this light, we can characterize our algerithin as follows:

° This thesis presents the first implemented, reprcsenlation-complete, search-

complete algorithm [at a given resolution) for the classical Movers’ problem in

64

R3 X SO(3).
1.6. An Outline of this Thesis: Research Contributions

In this thesis we present a local algorithm for the six degree of freedom
classical Movers’ problem. The channel based algorithm developed in Donald (1984)
is described in Donald (1983a).

At the heart of this research lie certain mathematical developments that may
seem fairly abstract at first reading. To motivate the mathematics, we first present,
in chapter 2, the design and implementation of a six degree of {recedom planning
system for the classical Movers’ problem. The description of the planning algorithm
assumes that certain representations and mathematical tools are available. In
subsequent chapters, we develop these tools in answer to the following questions,

for which chapter 2 assumes solutions:

VReprescntational and Algorithmic Questions

(1) What is an appropriate represcutation for constraints in a six dimensional
C-Spuce? (Chapter 2).

(it) In the six dimensional C-Space of the classical Movers’ problem, the domain of
each constraint is the product space of ®° and a complicated three-dimensional
manifold (witk boundary} on the projective three sphere. What, are these regions,
and what is their structure? What representation can be used for these domains?
(Chapter 3).

{iii) How do we plan molions using constraints whose domains change with the
motions? (Chapter 5).

(iv) Given a trajectory in C-Space, it is necessary to find where it intersects
the boundary of C-Space obstacles. Ilow can trajectories be intersected with
C-surfaces whose domains change along the trajectory? (Chapter 4, 5).

(v) How can interscction manifolds be constructed in C-Space? (Chapter 4).

p

(vii) How can rotation space be decomposed into regions where the set of applicable
constraints is invariant? (Chapter 5).

T PR T

How to Kead this Thcsia

Chapter 2-—covering the design and implementation of the scarch algorithm in
C-Space—-presents tie most heuristic component of this rescarch. It is also in some
sensc the most accessible chapter to the non-specilist. However, do not confuse
chapter 2’s implementation details and search heuristics with the representational
and algorithmic framework developed under the considerably more formal xgis of
chapters 3 through 6. The thesis is struztured so that those prefering a presentation
more in keeping with the traditional style of mathematical exposition may read the

chapters on 6DOF planning in the alternative order:

(1) Ceometric Planning Problems

(3) Questions of Representation: C-functions and Applicability Constraints in a
Six Dimensicnal Configuration Soace

(4) Mathematical Toola for Motion Planning in a Six Dimensional Configuration
Q
Space

(%) Moving Through Rotation Space
{6} The C-Voronoi Diagram and its Relationship to Intersection Manifolds
) A Planning System for the Classical Movers’ Problem with Six Degrees of
Freedom.
Iy the alternative order, the representations and algorithms are derived and

presented first, and the application and implementation is presented last.

Chapter 3 presents a formal framework in which several opcn questions about

{abovc) —inay be solved. Chapter 3

configuration spacse constraints—notably {ii)
also derives fundamental structural properties of C-Space constraints, in particular,
thie domains and domain topology of C-functions for the classical Movers’ problem.
We call these domains appiicability constraints. Chapter 4 audresses the intersecizion
problemin high-dimensional - Space: how to construct and slide along intersection
manifolds, and how to intersect trajectorics with C-surfaces aud applicability
constraiats. We demonstrate the ferm of the interseetion manifolds for 3% > SO(3)
and 8% X S'. Chapter 5 discusses algorithms for moving through rotation space,
and for decomposing rotation space into eguivalence classes where the set of
appdicable constrainus iy invariant. In chapter £, we extend the concept of the

gineralized Voronoi diagram {which Drysdale (1983) defoed for the plane) to the six

. R T R P L
SRS LRI .
R Tl i

TR T

.

e

P
',y -’l,

dimensional C-Space ®3 X S50(3), to provide a formal and constructive definition

of the C-Voronoi Diagram, or CVD. The CVD is an attractive construction, in that
! it contains a reprosentative component for each “branch” of frec space. Each such
component is a submanifold of dimension ¢ < d <7 5, called a Voronot mantfold.

._ We will derive the following :onnection between intersection manifolds and the

i CVD:

Theoremn: (The Equivalence Theorem for interseclion manifolds and the CVD).
Let p be a path along the CVD. p lies along a connected chain of Voronoi
manifolds, Vi, ..., Vi. We demonstrate that for cach Voronoi manifold V;, there
exists an equivalent intersection manifold of level C-surfaces, I;. Furthermore,
we also show that for every connected chain of Voronoi manifolds, there is an
equivalent connected chain of intersection inanifolds (of level C-surfaces). (The -
equivalence we demonstrate is actually stronger than homotopic cquivalence,

but the additional details are too complicated for this chapter).

67

T T e I B R e T T e T e T
W "ni."x.'(n.‘{‘&" A AR

B N B R i S, AR

2
A Planning System for the Classical
Movers’ Problem with Six Degrees of I'reedom

In this chapter, we describe the design and implementation of a planning

systcm for the classical Movers’ problera with six degrees of freedoin. The planning

algorithm required the solution of the seven “Representational and Algorithmic
Questions” listed at the end of chapter 1. The solutions to these problems are

presented in subsequent chapters.

In this chapter we will simply assume that these problems arc solved, and
proceed to employ the solutions in constructing a planning algorithm. Of particular
importance will be two effective procedures, which address the intersection problem

in C-Space;

(I) Given two or more level C-surfaces, construct their interscction manifold.

(Chapters 3 and 4).

(1) Given a C-surface and a trajectory, find their interscction, Determine
whether the intersection lics on the boundary of a C-Space obstacle. (Chapters

4 and 5).

The immediate application of (I) is the sliding problem: How to slide along
one level C-surface, and how to slide along the interscction of two or more level

.C-surfaces.

68

DS ERNARIR N T

T R N Rt L a g I S T L L P R bl AR ot
AR VAN uh.ﬁ.@".-»{x{-»{-n":w R N T ety J\)d YRy

Using the point navigation operators (chapter 1), we implemented a best-first
search algorithm in C-Space. The algorithm has nice theoretical properties which
include completeness (at a resolution). This chapter describes the heuristic search,
with particular emphasis on the heuristic strategies that evaluate local geometric

information, and on the interaction of these strategies.

2.1. Delinitions

A topological space M is called an n-dimensional manifold if it is locally
homeomorphic to R™. A chart is a way of placing a coordinate system on M: if
U and V are open subsets of M, two homeomorphisms f: U —+ f(I/) C M" and
g:V — g(V) C R" have C* overlep if the maps

fogligUNV)= JUNV)
go ™ fUNV)— oUNV)

are also O (that is, possessing continuous partial derivatives of all orders). A

family of pairwise C™-overlapping homeamorphisms whose domain covers M is

called an atlas for M. A particular member (f, U) of an atlas U is called a chart (for
the atlas Ui), or a coordinate system for U. For a good introduction to differential

geometry, sce, for example, (Spivak, 1979).

In this thesis we usually specify charts via the inverse form h : I — M
(where IR is an open subset of R") with the understanding that it is the inverse
(or set of local inverses) A~! which provides the family of charts {(h~!,W;)}, for
J; W, = h(R). As an example, consider the map h that specifies a chart for a five
dimensional level C-surface:

h: R - R X §O(3)

oy + gz 4+ Ey — £
(ylzv¢ro)‘/))'_'(_' e }; 4"—_";y’z;¢:0;¢)'

Here the E; are smooth, real-valued functions on SO(3), that is, I : (¥, 0, ¢) — R.
The inverse map h~' is obvious, and provides a chart for the five dimensional
submanifold of % X SO(3). In subsequent chapters we will derive such charts, in

the form of k; in this chapier, we will take them for granted.

6%

AR e T N e TN T SR SO DA, T Ao S0 S Tl .2 00 S
Aynio L R R T A R e AR e

2.2, Introduction

We are now recady to describe a planning system for the find-path problem in
R* x SO(3). The algorithm has the structure of a search and is complete (for a
given resolution). The basic idea is as follows: we are able to define and implement.
certain local operators. When applied st a configaration in C-Space, a local operator
attempts to move the robot in a specifind direction until cither the subgoal or an

intervening C-surface is reached. The local operators have the general form

Move(X :con figuration, i:direction, limit:con figuration),

and are designed to return X', the configuration reached in dircction 4, and
the reason for stopping (which will either be “reachced subgoal” or the name of
the C-surface which halted progress). The local operator assumes that X is in

a

free-space, an 1t there exists a collision-free path along 4 taking the
robot from configuration X to X’. Furthermore, we insist that limit = X +¢9, for
some positive t. I genersl, & can be represented as a tangent vector to R X SO(3);

the space of directions is clearly locally homeomorphic to R,

Many different M ove operators can be defined. Let X = (z, ©). We will restrict

7 to be ecither a pure translation

or a purc rotation

FN Y

f) e { +'{/.): _'¢y '+-01 _b; +¢: —¢ }

The closure of these operalors is complete for the space of configurations. By
this we miean that in the absence of obstacles, there is some finite sequence of
operators which carries any configuration X into any other confliguration Y. It is
often convenient to think of those operators as Translate(X, 4, z') (where @ € R?

and ' is a goal translation) and Rotate(X, &, ') {where @ is an angular direction

70

P R T at st e e

T AT Y VT TR T T

and ¢’ is a goal angle). The thecory and implementation of Translate and Rotate

is discussed in chapters 3, 4, and 5.

Given the local operators, we can define more sophisticated local strategies for
spatial rcasoning. These strategies are implemented by local experts' in C-Space.
For example, one local expert attempts to circumnavigate C-Space obstacles by
sliding along inter=ections of level C-surfaces. Another, “greedy” expert tries to
translate or rotate straight towards the goal. A local expert typically examines the
local geometric environment of C-surfaces, their normals and intersections. It also
takes into account the history of planning. The local experts can be thought of as
issuing “commands” in terms of the local operators. Depending on the results of
these atterupted mntions, an expert may issue other local operator commands, and

eitl.ar direcily invoke or leave a forwarding message for another local expert.

To summarize: & local aperetor is an algerithm for moving along a specific
trajectory until a corstraint is encountevad (or a subgoal is reached) . A local ezpert
is a strategy for choosing the trajectory baszd on an examination of the history of
planning and the local geomeury. When a locul expert chooses a trajectory, it calls

on some sequencs of local operators to realiza it.

Uihe terny local crpert was broupht te my atbention in discussions with Yan-Due Nguyen (Nguyen
{1983)), Tomix Lozune-Perez, wid Rodney Brooks.

71

Figure 2.1. Schematic illustration of the “Bumble” strategy (an exhaustive scarch). A fine
six-dimensional lattice is thrown across C-Space. By exploring from one configuration to its
neighbors in the lattice, a path will eventually be found, if one exists al the lattice resolution.
Fortunatcly, it is also possible to take large steps in the lattice, and simply record the neighborhoods
the path visits.

2.2.1. Planning and Scarch

The planning algorithm is implemenied as a search of configuration space. The
search constructs a graph of neighborhoods which have been explored. (We will be
more precise about the term neighborhood later). Each node in the search graph is
associated with a configuration and contains information about the local geometry
and the history of planning. The scarch algerithm chooses a node for expleration.
Several local experts are then applied at that node. Each expert can produce a new
search node. All of these are sons of the explored node, and are added to the search
queue. The new sons arc connected to their father by the arcs of the search graph

and cach son may be thought of as an ezploration from the father.

If at any point in the scarch, two explorations reach the same neighborhood,

72

the planner attempts to merge the associated nodes into one node.

The search algorithm is Best-First, (Nilsson (1980)) with the metric of progress
cstablished as distance from the goal. (This requires placing a metric on both
translation and rotation space). Other search measures (such as path length, or
time) would also be possible, and an A* scarch strategy could be exploited to find
optimal paths. In practice this would probably require adding new local experts in

order to ensure reasonable performance.

As search nodes are explored, they are entered in a priority queue, called the
search queue. The nodes in the scarch queue are ordered by the search metric.
Some search strategies we discuss require two search queues: when the primary

qucue is exhausted, then nodes from the reserve queue are explored.

We will proceed as follows. First, using the local operators alonc, we can define
a complete search strategy (at a given resolution). This search strategy can be
considered the most primitive local expert, and is known as the “Bumble Strategy.”
By applying the Bumble strategy at every search ncde, we are guaranteed to find

a path (at a given resolution) if one exists.

Next, we will define more complicated local experts which will be applied to
scarch nodes at the same timne as the Bumble expert. These experts greatly improve

the perfaormance of the planner.

2.3. A Complete Scarch Strategy

A scarch node is associated with a configuration. Every configuration is in turn
associated with a neighborhood of C-Space. The ncighborhoods form a partition
of C-Space. Since many configurations are associated with one ncighborhood, so

scveral search nodes may have configurations lying in the same ncighborhood.

Assume the neighborhoods are “small.” If the configurations of two search
nodes are in the sume neighborhood, it indicates that they should, if possible, be
merged into onc node, since they are close together. By keeping track of the set of
explored neighborhoods, we can avoid redundant explorations. If the neighborhoeds
are sufficiently small, then the search will be comnplete at a resolution closely related

to the ncighborhood size.

|
i

(Rer | A (Rer 9\

Figure 2.2. f,g: %R X §O(3) — R arc C-Tunctions which describe two level C-surfaces, ker f
and kerg. The level C-surfaces are smooth, B-dimcnvional manifolds parallel to C-Space ohstacle
boundarics. From X € ker f, three paths sliding along the level C-surface ker f arc shown.
Each path is orthogonal t¢ Vf. The sliding expert plans such paths along 5-D level C-usnrfaces.
{(ker £)(Y(ker g) is the intersection of the two level C-surfaces, and is a 4-dimensional manifold.
The fnterscction expert plans paths along interscclion wmanifolds. Such a path p is shown {rom
configuration Y.

It is possible to devise a complete search strategy (at a given resolution) using just
the iocal operators. We first throw a fine six-dimensional lattice? over configuration
space. The lattice is used to keep track of the slate of the planner, ie., which
neighborhoods have been explored, and for computing the connectivity of these
neighborhoods. The lattice will “wrap around” in the rotational dimensions, but
this is easily implementcd using modular arithmetic. We will definec an adjacency
function for points in the lattice; in addition, when a ncighborhood is explored,
the corresponding node in the lattice is marked. When a search node is chosen for

exploration,

2L.c., the Tactor spaces of the paramcter space are quantized, and the lattice is a partial order
on the Cartesian product of the Taclor space quantizations.

79

B T O A L AV TR P, LA O AV AL G TR AN NSNS R AA LN

» ;

i

VR PL L A AW
:‘E":r'\.ﬁ"-f"a\.;‘g\l LN

(i) X, the configuration of the search node is mapped to L, a point in the lattice.
L is the name of the ncighborhood N(I) centered on L, which contains X.

{ii) The unexplored neighborhoods adjacent to N(L) are found. Each of these
ncighborhoods is also identified by a central lattice point.

(iii) The planner attempts to move to cach of the unexplored, adjacent ncighbor-
hoods.

(i) has the effect of mapping a neighborhood of C-Space to a canonical element
{which lies on the lattice) in its interior. These neighborhoods decompose R X SO(3)
into equivalence classes with the same cancnical element. When a neighborhood
is reached for the first time, we mark its lattice point as explored. The scarch
terminates when a neighborhood containing the goal is reached, and when that

cxploration can be connected to the goal configuration.

76

T A R N A

2.3.1. linplementation of Neighborhoods and Lalttices

In principle, it is possible to implement the lattice as a six-dimensional array

(with modular indexing for the rotational dimensions). In practice, for any fine -::i‘:-'l’
resolution, this array will be cnormous, and very sparse. Although an adversary ﬁ;‘?‘:
can design a find-path problem for which our planner must explore the entire 3:;,:{5:
lattice, in practice this does not occur. However, we must maintain a record of what o
ncighbofhoods have been explored, in order to gencrate the uncxplored neighbors -1.\.“,
for a search node. Since the array is sparse, we will employ a different strategy. '7\"‘.' ‘

A partial order can be defined on lattice points by considering them as

six-dimensional vectors. This order has no particular geometric significance for ‘Q ‘

the rotational dimensions, but it c:u be used to store explored lattice points in a :}iﬁ
- O
binary tree. Since the vast majority of neighborhoods are never explored, the tree bo i
T .

it typically small, even for fine lattices. To mark a lattice point as explored, we gv-_‘ A
v

insert into the binary trec. To find whether a lattice point has been explored, we .

AN
o
search the tree.)

It is desirable to employ a fine lattice in order to ensure completeness at a fine
resolution. The use of a binary tree to record explored configurations effeciively
removes the problerm of lattice size for storing explored configurations. For example,
if we segment C-Space into an N X N X ... X N lattice, then an array would
have to be N¥ long. But the binary tree need store only the explored locations, and &\“‘E

o

(if height-balanced) can access any leal in O(log IV) operations.

77
Yt
", Y '(f‘-r .r P O A L L N T T e T K LT TP T G
\x.ﬂ.\v-=-..~.._ NN, AT AN AERS SA RS RN S
h l"!"l‘ '(Lot A o L A s, N P R L L A R S U AR TR TR ¢

If the lattice resolution is fine, then the planner as described so far will take
very small steps for cach scarch exploration. This has been remedied as follows:
If a local operator is invoked to find whether limit may be attained from X in
direction ¥, it must ellectively intersect a path in direction ¥ with all C-surfaces. It
is not much harder to find the first constraint along the path p(t) = X + (0 (even
if it is beyond limait): in particular, we note that all intersections along the path p
may be sorted on distance from X . The complexity of finding this first intersection
along p is independent of the lattice resolution (since the intersection algorithm has
nothing do do with the lattice; sce chapter 5). We can “sample” the portion of the
path which lies in free space at the lattice resolution. All of these configurations
are then marked as “explored”, and as reachable from their immediate neighbors
along the path. Thus they form a connected chain in the lattice along the path p.
While all these configurations are in some sense sons of X, in practice we will select
only one or two to be cntered in the primary search queue. These sons might be
(1) the son which is closest to the goal, and (2) some son at a reasonably large step
away from X . This step size, called the Bumble resolulion, might be 3 to 10 timcs
the lattice resolution. The other sons should be kept on a reserve queue, which can

be explored when the primary search queue is depleted or exhausted.

In practice, it may preferable to enter ranges in the exploration tree, for

example, to record that all lattice points
(I:yy 2 11)) 01 ¢) S L S ({l: -+ kd'['r Y, z)¢:0: ¢)

(for some integer k) are explored. This requires keeping an exploration trece of lines
instead of configuraticns, with the intent of minimizing the number of exploration
tree entrics. When lines arc entered into the tree, they may be merged with previous
lines to form connected components of explored regions. These operations are
supported by hicrarchical subdivision algorithms. At this point in the experimental

use of the planner, it is still too early to tell whether this optimization is necessary.

78

In practice we have had no problemn in seiecting a very fine rcsolution for
the lattice (one selects a fine lattice resolution, and a considerably larger Bumble
resolution or step size, as described above). This lattice-based strategy is not
only theoretically complete for a given resolution, but has also been used to find
very complicated paths for the 6 degree of frcedom classical Mover’s problem.
However, the algorithm has an “excessively local” flavor—it is clumsy and quite
slow when employed alone (hence the strategy’s name). We can construct much
“smarter” heuristic experts which attempt to exploit coherence in C-Space. When
these experts are used in conjunction with the Bumble strategy, we obtain a
plaaner which is not only complete, but which can solve complicated problems in
a reasonable amount of time. We continuc to find the lattice usclul for recerding

the planner’s explorations by the local experts.

2.3.2. Keeping Track of Connectivity

Suppose a subsequent exploration recaches the saine neighborhood. There are

ich we call the mark algonitiun and the conneci aigorithm:

The Mark Algorithm. Discard the exploration, since the neighborhood is already
explored. In practice, the mark algorithm often suflices for path-finding. The mark
algorithm computes a directed, spanning tree 1" of explored neighbortoods, which

is rooted at the start configuration.

The Connect Algorithm. Connect together the search nodes for all explorations to
that ncighborhood. The conncct algoriithm is more complicated, and requires the
following bookkeeping (see figure 2.3). Let N be a neighborhood of R* X SO(3),
and L € ¢(N) be a lattice point which is the canonical clement for &. Suppose X is
an exploration of N, i.c., X ¢ N is the final configuration in some motion reaching
N. Let s(X) denote the scarch node for X. (If X is the first exploration of N, then
create a scarch node s(L) for L). Determine whether there exists a path from X to

L (using the local operators). If so, connect s(X) and s(/.) together.

The connect algorithm computes a more complete connectivity graph for
the neighborhoods of C-Space. It computes an undirected graph Il of explored

ncighborhoods, which may contain cycles. As long as [/l is connected, then T

Y
A %

O

.y

iy

g
&

Figure 2.3. The Iatiice point L i8 at the ceonter of a neighborhood N of C-Sypace. Scarch
explorations arrive at configurations X and Y in N. The planner attempis (o hnd a path
connecting N and Y, Ly trying to conneet both configurations to L.

is a spanning tree for I1, and the mark algorithm is complete for planning a
connected path along H. However, not all planning strategics admit this kind of
“connected planning.” In particular, when we consider strategics which construct

pariial paihs and planning islands {which may

latine o
dldves \.Onuu.\., t’

algorithm is necessary. (Sce the Suggestor sirategy, below, for an example).

2.3.3. Discussion of the Bumble Strategy

Snppose the lattice spacing is dy and dp in the translational and rotational

din: ione. Then the adjacent lattice points to L = (z,y, 2,4, 0, ¢) will be:

80

v » LI Y

wow (e MY R PR P g™ AW MR W LIS e .,y L e Y I N S IR
N A O A e L e 8 La Ll 8 e \".'::"_"-.’ 5

T URC %" . CEERITLLA STR 7AW PR - Y T R TR AT W W WS TR W W R R W e e weew s e
R . X

(z4dr,y,2,9,0,¢)
(z.y L dp,=1,0,0)
(zyu, 24 dp, 9, 0,6)
{r,y, 2,9 3 dy (mwod 2r),9,¢)
(z,y, 2z, 4,0 3 dy; (nod 27), §)
(z,9, 2.0, 0, ¢ & dp [wod 27))

8
[T

Bach adjacent lattice point is the center of & ueighborhood of configurations which
iz conviguons Lo the neighlborhood of L. TDach such aecighborhood can be reached
(if it is in free space and there is no intervening C-surface) by ihe local operators
Translate and Rolate. Since there are 12 neighbors for each lattice point, we have
found it inadvisable to cxplore them all for cach search node expansion. Insiead,
the set of uuexplored adjacent neighborhoods is ranked (in terms of proximity
to the goal), and motions towards the top Ay tramslational and k; rotational
neighbors are attempted. (Typically, ky == 3 and k,; = 2). I the node is recxplored
later, motions toward &, 4 &; morce of the unexpuored neighbors will be atterpted
(if Yere are thai many ickt). When using the mark algorithm {above), we say
a0 exploration is successful i it reaches a new {unexplored) neighborhood. If an

explurziion is successful, then a new search node is ereated and the reighborhood

i i marked as explored. Since the neighvorhood’s “name” is its lattice point, this
; stinply cosresponds to marking the tattice point. Whetlhier zuccessful or not, all

cxp!nr;i.tions are recorded at the pareat seaich node so that thiey will not Le tried

3 o configuration in ¢ i A, with associate! laitice
point L. The unexploied adziecent labtice points 1o L indicate a set of subgoals to
.- be attained fromn X The Beseble steategy ranks these subgoals, chooses some of
them, 2nd so'ents wajecteries whicl may attain them, The local operators are then
employed to {try o} sealize the selecied trajectories. These explorations arc then
recorded se Jhat only nes: explorations will be pursued in the future. Note that

the planne s not coustrained to move along the latticr, and that althoagh the

subgoals e on the littice, the maotion frome X to any subgoal docs not, unless

X == L.

Thelacal experts are considerably aie sophisticated than the Bumble strategy.

g1

[[l
TR AP

AN u{'!- ", 1

LAY

SRR '\‘v\.‘ AN L, S -
"L y oy NG&." 'M’\.'\.'L'u \-.. \)1.‘ n S -..‘\.\.\ :..'}‘f..\ N

AR AARNR)

*}LL'\ LY. 5§

ﬂ AN 't.”"\.'-.,fx,..(,. L -\,'H-‘

™ o
%y, 'l.. lu."tm.’ AT ORIV r."n.'f't. A.M(" 7

Their subgoals nced not liz on the latticr, and the motiens specified to the local
operators need not tie along the lattice. The laitice is still employed te keew track

of the planning history and the connectivity of explored neighborhoods.

Clearly, the arcwisc-counccted sets of lattice points are closed under the
operators T'rassiate and Rotate. If a path cxists at the lattice resolution, then
the scarch is guaranteed to find it. We sce now exactly whai the resoiution for
this find-path algorithm is: by choosing 2 sufiiciently fine Jatiice, the algorithm is
(trisiaily) complete at the lattice resolution. As we saw above, we can chsose a very
fine Lattice with Little computational overhead. One final point: the start and goal
configurations iy not lic directly on the lattice. This is not a problem, however,
since the locul opeiators can ensure thet there exists a path from the start and goal

to the nearesty fattice point.

2 .4. Loeal uxperts for the Find-Path Problem

2.4.1. PaLlh Planning versua Continuous Interacction Detection: Why We

Nzoed Local Experts

The Translate and Iiotate operators detect collisions along continuous
trajectories.? Given thesc operators, it is possible to devise a complete path-planning
algorithm bascd on something iike the Bumble strategy, above. However, while
coruplete, this is not a particularly good algorithm, in that it says nothing about
how or when the operators should be applied. The domain of the operators is
large 2..1 lor realistic path planning, it is necessary to know where, and in what

directions to apply them.

Algoritims which can detece irterseciions with obstacies for a rovot following
2 continueus tiajectory say nothing about how io plan these trajectories,

However, they can be used to find a path Ly exhaustive search.

The Translate and Rolale operators use the constraints in C-Space to detect
collisions. Bowever, shese coustraints can also be employed to plan paths. In

chapter 1, we proposed an idealized planner wlich constructed the intersection

IThis discussion ndan holds fur the general Moue operator,

g2

S RN AR T e e T -“'&"“-‘r-.;-.' A A R R R SN AP, L CRCRER LA ""-J:‘\f."s',:'\‘;-." .
K . AS w A

- - » L - "
PR PP AR R PO P R AL P P Ny

manifolds of level C-surfaces, and slid along these manifolds to navigate & cund
C-Space obstacles. Such a planner could exploit coherence in configuration spacs:
by examining C-Space constraints an algorithm can be devied for intersccting
and sliding on C-surfaces to circumnavigate C-Space obstacles. In the following
sections, we describe a planner which approaches the idealized planning algorithm
of chapter 1. The local experts are strategies for reasoning about the local geometry
of configuration space, and for exploiting gecometric constraints to plan collision-free
paths. When aponlied to a search node, cach local expert examinces the local geometry
and history of planning to propose one or more path segments. Fach path segment
is realized by means of the local operators, which ensure that a collision free path

exists.

2.4.2, Designing Local IExperts

In the exploration tree of C-Space neighborhoods, we have seen one type of
information that must be maintained for planning. In desiguing local experts, we
must address the following questions:
(i) What constitutes a local description of a (level) C-surface? NG

(if) What information should be stcred at a search node?

(i) can bc stated, “What constitutes a sufliciently rich description of the

local geometry in C-Spacs to ailow robust local experts?” (ii) relates more to the

history of planning, and the connectivity oi the explored scarch ncighborhoods.
For example, we want to record the results of previous applications of experts at a

szarch node, and the adjacent nodes in the search graph.

The Lucal Description of a C-surface

A C-surface has a normal at point X', Motions tangent to the C-surface at X
will have instantaneous velocitics orthogonal to the normal. We must characterize
the normal and tangents to a C-surfacc in order to plan trajectorics whick slide

along it.

Let f be an applicable, positive-valued C-funcuion at X7, We can check that fis
non-redundant at X (sce chapter 6); alternativeiy, we may heuristically assumne f is

non-redundant if its value at X is small. We wish to develop a local characterization

83

B oIy o T W S PR LR WP NETh S N
T T T N S N T RN e T SO RN Je e N I S o
" L Skf»(m :"‘:’h:"' :\A’:'.":x fy}; :‘l-t"\h}:’(:k 'F.\.'\.nj" f.«'\..l\."'(?‘ ﬂ LN)U\'lb“' Wi Wa ¥ o ! A Y

of f at X, that is, of the level C-surface S = {Y | j(Y) = f(X)} about X. We

should think of § as the kernel of the auxiliary function

Ix W x s0(3) -
Y e f(Y) ~ J(X).

The local characterizaticn will have two paris, one of which is iavariant, and cne

of which will change for different subgoals. The invariant part of the description is
4 8 F

(sc0, vs)

consisting of the value of f at X and the rormal to § at X. Now, since R X SO(3)

a pair,

is not a vector space, the normal V f(X) to S at X will depend on the Riemannian
metric defined on the taugent space at X. We will employ 2 metric which admits
construction of V f(X) using the partial derivatives of f at X, with respect to the

parameterization of C-Space. Hence if rotations are paramecterized by Euler angles,

thm\Vf—(J af 9f A af Ay

______ azr’ gy’ gz’ oy’ av ags”

Assume that V f is normalized to be a unit vector. We 1 ow wish to characterize
the relationship of the C-surface to some subgoal, G: this requires sorue way of
talking about directions in N3 X SO(3). Specifically, we wish define a “vector”

algebra on configurations, such that

lim ||G—X|| =0
C—X

and

Jim (G~ X)-(G' - X) =1.

These equations express the vector space characteristics which are requied for
our computations on tangent vectors. To construct this algcebra, it is possible to
define a field of inuer products over R X SO(3), ie., to defiue an inner product on
the tangent space to cach point. Thus 8% X SO(3) is 2 Riemannian manitold (see
Erdmann (1984)). If two tangent vectors-i.c., dircctions-are applied to the saine
point, this inner product allows us to talk about the angle between two such tangent

vectors, or of the angle between an arbitrary tangent vector to R X SO(3) and the

normal to a C-surface, However, the inner product is somewhat arbitrary for our
znplicatica Alternatively, we could alse construct geodesics on 1™, ke 3-sphere
wiin anuipodal! points identified. These approaches are veobably too elaborate for

a heuristic strategy.
lleurislics for Evaluating Directions in the Tasgren® Space
g £

A basic issue is that placing a metric onr a aon-abelian group. such as SO(3),
is a dilficult problem. We will demonstrate the metric that our planner employs,
and then show that it i1s adequate for this application. In particufar, the metric
is adequate when applied to threc one-dimensional slices of SG(3). (These are the
slices considered by the Iotate operator). Note, hiowever, that a metric may also
be derived by representing rotations as uxi!{ quaternions. ln this case, the metric is

obtained by considering rotations as poinis on &3 viubedded in ® (Brou 1983).

Suppose we employ rotation matrices to represent rotations. {The implemented
planner uses Euler angles). If we are willing o toleraie singularitics ip the
representation, it is often convenient to iucniify a rota’ion mawrix in SG(3) with
the vector of threc angles, (1,9, ¢) whict determine it. The angles (v.7, ¢, ferm a
three dimensional angle spare, @3. The rotation raatrix corresponding to (¢, 6, ¢) is
of course R(%, 8, ¢). (The singularitics induce an equivalence relation on @3, where
two points in angle spacce are equal when the r.tation matrices they determine
are equal). Most of the time, the identification of JO(3) with (7% does not lead
to problems. However, when we wish to comput~ directions, and diffcrences of

configuritions, it is necessary to distinguish betvren $4(3) and .

We can state tlas more concisely as follows: SO(3} is a three dimensional
manifold. The mapping R from DEuicr angles to rotation matrices is a chart for

S0(3):

R:QY— SO

We typically duseribe a rotation R(©} ¢ SO[3) by ‘ts chart coordinates (v, 0, ¢) =
| 6 ¢ @Q*. This makes it couvenient to identify © with %X/@), so that in gencral,

i instead cf dealiug -vith the manifold directly, wo will work with a chart for the

L)

|
{
'
i
1

e m k"B MMM A R A AMAL LA A A AL T AT R MR A e N M A AT A MM N~ &AM BN MRS LN AR MM MAL " RAL KM LA R oK TaR P uRLAL L AN

manifold. In this section alone, however, we must distinguish between the domain

and imagc of .

We can compute a direction in R* X SO(3) by simply subtracting two
configurations (c¢f course the angles must be subtracted (mod 27)) to yield a
six-dimensional direction vector. Using this arithmetic, the goal direction is denoted
G — X . We will use the convention that the first three coordinates of G — X arise

from R?, and the sccond three coordinates arise from @3.

Let G = (G, Gg) and X = (X, Xg). Since G — X is clearly well defined
when G and X differ only by a translation, assume that G and X dilfer only by a
rotation. Assume further that rotations are represented by Luler angles. Note that,
in gencral G — X is not a rotation which carries the moving vhject at orientation
G into the nioving object at orientation X. However, G — X does represcni the
difference in oricntation, i.c., it specifics a displacement in angle space which will
carry G into X . For example, if Gg = (453°,56", 90°) and Xe == (45°, 45°,45°) then
there are rotation matrices R{Gy) and R{Xg) corresponding to cach of Gg and
Xg. (We use degrees, not radians in this example, since the sywmbol 7 will soon be

used for a projection map). Note that

R(45°,50°,06%) £ R(45°,45%,45°)R(0°, 5°,45°),
where RR' indicates composition of rotations. However, the path in angle space

p(t) = Xg +1(Gg — Xp)
= (45°,45",45°) + 1(0°,5°,45")
for t € [0, 1]} wili work, since it corregponds to the rotational piuth
Ly} ? i
E{p(t)) == R(Xe + {Ga — Xo))
= R{(45”,45°,45°) + ¢(G°, 5", 45°)).

Considering configuration space as the product spsce of the translation space

and the angle space, we sze that G — X s wel Jelined. Gg — Xy specifies a

R N A N I G RN N T R AR R N N W SNV LN U T

S o

-

s

>,

R o L]
fa‘r‘r

MY

R A R U JRE T (£ LU o v

direciion and a distance to be traveled i angle space in ordur to carry Xg into Gg.
Furthermorz, zlong the path fiom Xg to Gg, the corresponding rotations specified
by the angic space trajectory p are well defined. For all G € R X SO(3), we will
treat the space of directions & -~ X as the tangent space Ty to R* X SO(3) at X.
Properly, 1"y is the product space of the tangent space to R at X, and ihe three

LN
i .
EI‘:"! “i_

dimensionai angle space (3%,

We now define a map from Ty X Ty to the plane, which will function in place
of an inner product. Fiist, define the natural projection maps from 7'y onto its

factor spaces:

s Ty — ®3
(G"‘X)H (Gz ""'-AY:)

mg : Ty — Q°
(G = X) (G — Xp).

L2t u - v denote the standard inner product on %#*, for vectors u and v. If u
and v are prejections (under wga) of direction vectors in Ty, we s2y that u and v
are trunsiationaliy orthogonal if u - v = 0. Let (g1, g2, g1), (w1, wy, w3) € Q3. Assume

the cach pair of angles ¢; and w; (for © = 1,2, 3) is normalized so that

lg:i —wi] < 180°.

{Note that this normalization is critical). Now, define

! “Q((%%qs),(wl, wzﬂ“s)) = qwi + Q2w + qaw3.

!

! ng will furction in place of an inner product on Q*. We say that two rotational

! dircctions ¢ and w are rolationally orthogonal if ny(q, w) = 0.

; We may now define @y, which will function in place of an inner product on

g Ty . First, lel

? D=G-X

i D'=G"-X.

rg R

;nu‘\m e\ WU S AR S LW S 0 W S A A T e e WL AW L e WA SRS e e e T NI ‘*.\'-Ij' '

Assume that D;, .. Dg, ané Dg are all normalized to be length 1 (where the

length of Dg is defired as ngi{Dg, De);}. Finally,
Gx :Tx X Tx -» 5
(D) D,) - (7[!)?3(',))) ﬂﬂf:‘(Dl)r n()(ﬂef‘o)» Wé)(D’)))‘

So @y yields a pair consisting of the dot product of the translational components
of the direction vectors, and the ng produet of the rotaiicnal direction vectors. If
¢x (D, D') = (0,0), we say that D and D' are orthogonal directions in the tangent
space T . Note that two directions are orthegonal if, and only if, their translational

components are orthogonal and their rotatioaal comjonents are orthogonal.

This discussion extends naturally to other representations for rotations. For
example, if spherical angles (Kane and Levirson (1978)) are used, then the dilference
in orientation 1s the rotation carrying & into X, thai is, Fg — X¢ ie a rotation
carrying the moving object at orientation Xg into the roving object at orientation
(Gg- We should stress that the natural Riemannian iancr produce (Erdmann (1984))
could be used instead of @ x. This would coinplicate the representations employed
in subsequent chapters. ® x and ng are heurisiic measires on directions in Tx. We

will later discuss why, for our purposes, they are good heuristic measures.
Iivaluating Normals and Gradicnts to C-Surfaces

The local description of a C-surface relative to some subgoal is desigued to

address the following qualitative questions:

(i) Is the C-surface iocaliy tangent or locally orihoguual o the goal direction?
(i1) Is the C-surface locally orthogonal to any rotational molion?
Recall that a level C-surface ker f ig described by a real valued C-function f.

Assume that normals and tangen: veclors are appropriately normalized. Question

(i) may be resolved by examining

$x((C = X), V(X)) (2.1)

When (2.1) approaches (0, @), we say that ker fis locully tangent to the goal dircction.

Note that (2.1) makes scase. f maps parameters of the form (2,7, 2,1, 0, ¢) Lo real

L

» a2

0 QUMM DI e e PP et S D O e 3 e e e S e el i PRAC AN

T)) e ‘."-:
2
i‘:?lk';
;7;..'7
R
‘:t. -‘i‘?‘ T
RN

numbers, and hence the gradient of f, N
.*:",' \]
(a{ af as5 df af 6f) s
9x' 9y’ 92" 3y’ 90’ I x
R
is clearly a direction in T'y. “I&J::.“
(“.“ ,
radnty |
We will also employ f:fnfgf-::ﬁ"--
¥ E
o
ma(G — X) - mpa(V F(X)), (2.24) E}:‘;*
;"E:E'
When (2.2a) approaches 0, we say that ker f is (locally) translaticnally tangent -'.% At
to the goal direction. Symumetrically, when (2.1) (resp. (2.2a)) approaches (1,7) "::::i
K O H
(resp. 1), we say that ker f is locally orthogonal (resp. translationaily orthogonal) i‘;\ :q‘
N 4
to G — X. A similar calculation yields the rotationally tangent and orthogonal ‘:ts?.:\':)
g REAY,
C-surfaces to the goal dircction: -
B
nq(re(G — X), 7e(VS(X))). (2:26) s
h-\ o .
Why ®x and ng are Good Ieuristic Measures -..‘-,-.
Suppose that the rotational direction is along one of the axes. (Let. us say the ;:' e
direction is a:) To tell whether a C-surface is rotationally orthogonal (or tangent) Wigd
to the ¢ direction, we simply examine the magnitude of gé, which can be obtained i .
i
directly from V f{X). This is because e !
2
af LN N
. ar af,, _ of S
n TFI.VFX =1 00'1’ = == =) = - S48
ol (VO = na((0,0.1), (55, 55 5y = & a
Wadye
In other words, the map ng need not be employed. Since the implemented Fotate ',;
O
opcrator moves along the rotational axes in directions '!::#::‘
pAaE
€ { "“1»7)) "‘12); +ar "'b; "‘ési “?‘ ’
this is the most common-—but not the only — test for rotationally orthogonal (or
tangent) C-surfaces. This information is used by the rotation cxperts to choose
rotational subgoals that move away from C-surfaces.
v
86 Vit
T LT T T T T T e A T P N A St A A i A A Ny iy '\"?:'P:""
Ff M B P A S A ¢ A Ay im R NN IR "l " P W AP A Y PPN LTRSS uk 1.

Description of a Scarch Node

The following information is stored at each scarch node. Lazy cvaluation is
implemented so that some of these objects (for example, the set of all applicable
C-surfaces) may not be computed until they are required.

(1) The configuration X of the search node.

p

(ii1) The applicability set at X.

(iv) A, the set of non-redundant constraints at X, sorted on increasing value. The
non-redundant constraints may be approximated by the applicable constraints

having small positive (or zero) values at X. .
f (v) The parent node. ' ':i':?::
: (L4
; vi) The From-Direction {The direction traversed from the parent node to this .0}:" X3
' \ p ...'l':,’rll 3

node). e

(vii) The sons of this node. These include “unsuccessful” explorations which did
not reach a sub-goal, or which reached a previously explored neighborhood.

(viii) The C-surfaces on which X lies which also bound C-Space obstacles, that is,
all f € A such that, f(X) = 0 and ker(f) bounds a C-Space obstacle at X.

(ix) An Ezplanation of how this node was reached. An explanation typically includes
the name of the local expert that planned the move, and cnough information
to rcconstruct the move. For example, the experts which slide along level
C-surfaces leave an explanation containing the names of the constraints, their
levels at the parent node, and the parameterization chosen for the intersection
manifold.

Much of the information stered at a search node is used to record the history
of the pianning. An expert which planned the move to a search node s will not be
applied again with the same parameters. As an example, consider the Intersection
expert, which attempts to slide along intersection manifolds, and the Greedy expert,
which attempts to move straight towards the goal. We discuss these cxperts in
more detail in the next scetion, If applied to s, the C-surface intersection expert

will not attempt to construct and slide along the same intersection manifold

which led to s, unless it can slide in a different direction along the interscction

manifold. By recording the From-Dircction for a node, the planner can avoid
repeating unfruitful explorations. In particular, different experts can advise motion

in the same direction; thus a particular intersection manifold may point in the

90
.{.'.(‘- O TN NN VT N A AT l"f.'\'..',"N'.\','\',"-' et ')'"\.'. e et ’T-'N =
o \6\1\\}".&*&"3-. ey o e Y ey ~

same direction which was previously (or siinultancously) attempted by the Greedy
experl. Whether successful or not, re¢xploration in this direction may be avoided by
examining the From-directions of the sons of s, An additional constraint is provided
by the F-om-Direction of s itself: there is typically no point in exploring back in
the direction we came from. The process of leaving information for some expert
which may be applicd in the future is known as “forwarding.” As we shall see, the
performance of onc expert can y vide strong hints as to what expert should be

applied next.

The planner computes local descriptions for the C-surfaces in A. Naturally, parts
of thesc descriptions will change for different subgeals. The local characterizations of
C-surfaces allow the planner to find the set of C-surfaces to which the goal-direction
is tangent (or orthogonal) as described above. When a planning direction is chosen,

these C-surfaces clearly provide strong constraints.

We are now ready to discuss the experts themselves. The Bumble strategy is
also applied at cach node, since it is a guarantee of completeness. In light of the
previous discussion, we will omit any discussion of the detection and pruning out
of explorations in unfruitful directions (as determined by the planning history).
We will consider the application of particular experts to a search node s (at

configuration X') which has parent sq.

91

P
”

i %

-
LA

7

)

CHX
i ‘E‘.

A',

-
F

&)

m TANCNEN Ml WW MRS O WEN WS AL WA ML W AR %S W AT Mt

2.4.3. The Greedy Expert.

The greedy expert attempts to translate or rotate directly towards the goal.
The cxpert is necessary as an “cnd-game” strategy, in order to close in on a
particular subgoal without worrying about finding the appropriate intersection
mailifold. The Greedy expert illustrates two important heuristics: forwarding and
backing off. Suppose the greedy expert translates {rom a parent node sg to a
son s. An appropriate explanation for the move will be left at s. If the same
subgoal is intact when the planner explores s, the greedy expert will not attempt
translation again. Instead, the rotation expert (see below) might be invoked. The
effect is one of translating until an obstacle is hit, and then rotating to get around

it. Alternatively, the sliding cxpert (which slides along level C-surfaces) might

be invoked. This coupling of cxperts is termed the “hit and slide” strategy (sce
figure 2.4). However, the planner does not directly recurse by calling the sliding
expert immecdiately after the greedy expert. Instead, a suggestion is left by way of

| Y R T B g, |
Cxpl(lll(lblull al 0, 4l WIICH O I3 TApMIL

ropriate follow-up
expert is invoked. The exact choice for which expert is invoked will depend on
the history of planning (lypically, what ncighborhoods and direciions have been

explored from sg and s), and on the local geometry of C-surfaces about s

Suppose that all experts moved the robcet as far as they could, that is, moved until
a constraint was hiv and left the robot touching the constraint. This could result in
jamming the robot up against many C-surfaces at once. It can prove very dillicult
to extricate the robot from this logjam situation. In fact, it is usually not preferable
to move all the way up to an ohstacle. Instecad, we wish to detect this intersection
with a planned trajectory p, and then back off fromn the obstacle boundary (along
p). Thus if p(0) == X and p(l) =Y is the first intersection of p with C-Space
obstacle boundary, then it makes goed sense to move to p(0.8). This has the effect
of leaving the robot in the channcl between obstacles instead of jamming it up in
corners. Of course, if it is necessary to move to p(.95) then the greedy and Bumble

strategics will ultimately converge.

42

Figure 2.4. An idealized illustration of the hit and slide strategy. Some expert moves the robot
in direction ¥ until a C-surface § is hit at X. When the planher tries to move from X, the
sliding expert is invoked to slide along § in the goal dircction.

2.4.4. The Intersection Expert

The mathematics of intersection manifolds in R X SO(3) is presented in
d

chanters 2 and 4. The intersection expert attem
whose intersection manifold contains a path which makes progress towards a subgoal.
The path may be a pure translation or a pure rotation. We will begin by describing
the process of finding a translational path which slides along an intersection
manifold. First, all C-surfaces in A which are nearly translationally tangent to the
goal-direction are sclected. We select the first few of these which have the smallest
value at X . Idcally, these are the closest non-redundant constraints at X. Call
this set A’. The explanations for the moves from s; to s and from s to any sons
of s will yield a set of previously explored interscction manifolds. (An intersection
manifold may be identified by the name ol the intersected C-surfaces, their levels,

and the chosen parameterization). The C-surfaces in A’ are pairwise intersected

93

§-
st i L AN U M AL L AN AL MU T LR AL E N a AL R e AU o e T AR A N MA N VAT R T EMA S IEA AT A ATAAA RARA S TE T T8 1% 2T s 9amuae %um q_c.% r§

(sce chapter 4), after appropriate pruning as indicated by previously explored
intersection manifolds. Each intersection manifeld (ker f)N(ker g) is constructed. A
translation or rotation vector ¥y, is chosen such that the path py (1) = X + tdy
slides along the intersection manifold of the two level C-surfaces ker f and kerg
al X. The interseciion expert then selects the direction 9y, “which is closest to
the goal direction (and which is not pruned out by consideration of the planning
history). Suppose 9/, is a pure translation. The locai operator Translate is called
to move from X in direction 9y , until a C-surface is struck? or the point on the

trajectory py,, which maximizes proximity to the goal is reached.

Now, suppose ¥y, is a pure rotation. Our experimental implementations have
intersected two C-surfaces ker f and kerg Lo yield pure rotational paths sliding
along the intersection manifold of ker fkerg (see chapter 4 for the details). In
Proposition (4.4), we demoustrate that these paths may be approximated to an
arbitrary resolution by successive applications of the local operators, with only a
Encar increase in the number of path scgmonts as the resolution grows fineir. We
have also found it useful to approximate the rotational path along the intersection

as follows.

Given two level C-surfaces ker f and kerg at configuration X, we wish to
choose a direction from X tangent to both. For example, if the configuration space
were isomorphic to R, then ker f and ker ¢ would both be two dimensional surfaces
in 3-space, and this dircction would be Vf(X) X Vg(X). (Where X dcnotes the
standard cross product on R3). In the tangent space to a six-dimeusional C-Space,
there are typically four such tangent vectors at X which are tangent to ker f and
ker y. We will demonstrate an operator analogous to X which produces one such
tangent vector in a natural way. (It is also possible to solve for all such tangent

vectors).

We begin be defining an extended product on the tangent space to R% X SO(3)
at X. Let V = (V,;,Vy) € T'y be a tangent vector at X. We may think of V7 and

Vg as the translational and rotational components of a six-dimensional velocity

TAlthough we alse employ the backing off beuriotic here.

g N T S S U N D W e gl
PN I IR R AL R I M N RO PR N R R TR, ,"‘;’i“.’

e
"y 0:‘-: K

R IR A LN TG L A A

vector V at X. If W = (W,, Wy) € T'x is another tangent vector at X, we dcfine
the extended product of V and W by

VX W=(V; X Wy,Va X Wa).

The cross products on the right hand side arc simply the standard three-dimensional
cross product. (See below (2.3) for why this makes sense fur the rotational
components, Vg X Wy). Il V =V f and W = Vg then V X W is tangent to both
ker f and kerg at X. Since X only operates on tangent vectors lo ®3 X SO(3)
which have the same point of application, we will never have reason to confuse it

with X, which can only be applied to three-dimensional tangent vectors.

Let f, g € A! be C-functions generating the C-surfaces ker f and kerg at X
Observe that the tangent vector Vf(X) X Vg(X) is tangent to both ker f and
kerg at X. We can lecally approximate a pure rotational trajectory sliding along

the niersection of f and g by a path ia direction

m6(V/(X)) X 76(Vg(X)). (2-3)

Note that this is well defined since

af af 3f

7r0((3f af af of af 0/))_(3315,%,%)_

Zr E_j_' (7);1 a_lpy'go—)—aj’; ’

\\

The dillerential rotations from X are isomorphic to a three dimensional vector

space, and hence the cross product

af ar ar dg dg dg
(), 2506), 2300) x (5500, 5000, 220x)
(5500 56 550) 5 55,00 5500, 52(X)
15 also well defined, and guarantced to be tangent to ker f and kerg at X. The
Rotate operator can be called in succession on the largest components of (2.3)
in order to approximate the sliding trajectory. Of course, it is also possible to

re-evaluate the tangents after cach step.

95

. Ly o o
N 0 B S S SN 8 o B e S Y 2 N o T Yt e T e SN0 v AN

2.4.5. The Sliding Expert

[The sliding expert attempts to find a path sliding along one level C-surface
at X, which makes progress towards the goal. The sliding expert can be thought
of as a less constrained version of the intersection expert. The sliding expert tries
to choose a C-surface in A’ to which the goal-direction is (almost) tangent. As we
will see in chapter 4, it is possible to choose a parameterization along a C-surface
which maximizes progress. This path along the C-surface can then be realized (at a
desired resolution) by successive applications of the local operators. Iowever since
therc are many paths from X sliding along a C-surface at X, we need to devclop

a good heuristic strategy.

Qur motivation is as follows. There arc an uncountable pumber of paths from
X sliding along a C-surface at X. We could maximize a dircctional derivative at
X to choose 2 locally optimal search direction. This would work once; however,
this would not solve the problem of state: it is necessary to partition the set of
paths into “neighborhoods,” and to mark a ncighborhood of paths as explored
when a representative from that neighborhood is selected and attempted by a local
operator. in principle, a computation involving homotopic equivalence classes is
possible (sce Donald (1983a) and appendix). However, this requires a global

computation in C-Space. In particular, the image of all paths in an equivalence

class may cover R* X SO(3), even if there are scveral classcs. We wish to find a
way to partition the paths from X into neighborhoods, sample a canonical eleinent
and evaluate it as a local move in the search.

from the nei

o
Lads it Vit

Given a C-surface normal V f at X, we wish to choose a direction v sliding along
the C-surface ker f which maximizes progress to a subgoal. Let B = (%, 9, 2, b, 0, <2>)
be the obvious orthonormal basis for the tangent space to R* X SO(3), and

'—B - (_i:; ""g: '_2’ h"\?)i —b; '—&)

Next, we form a sct of vectors orthogonal to V f{X) as follows:

= {v/(x)}®(8U-8)

96

e e I N e TN T T M T R e i IR D 1

M,

g where P Q = {p X q |p€ P,qe 2} All of these vectors are orthogonal to
ker f at X. We then choose the direction ¥ € D which maximizes ® x (9, (G — X)),
where the G — X is the goal dircction. If @y is the heuristic product on tangent
vectors inscad of the single-valued Riemarnian inner product, then both componcnts
of the image of ®x should be maximized. In chapter 4 , we will sce that it is
possible to comply as closely as desired to the C-surface ker f while traveling in

direction 9.

To understand this strategy, consider the following cxample: Suppose we

employ a basis B/ which only spans R*. Then the expert will choose the available
translation sliding along the level C-surface which maximizes progress towards “he
goal. Once the direction 9 is choscn, the Translate operator is invoked to slide

along the level C-surface until a constraint is reached.

i There is no neced for the basis B to be orthogonal; this was merely adopted for
the sake of intuitive development. The basis provides a sampling of the function e
space of paths compliant to the C-surface about X. }L‘!L'}:
AN
. o
A Conjecture on Completeness using Lxtended Spanning Sets .('.::hs
‘.
Loess
. v
By using the basis B, we obtain a 12-way sampling of the space of directions ;.'}';.G.t
orthogonal to Vf at X-—in other words, there are 12 vectors in D. linagine using NN
Ny
another set of vectors, 31, which is larger than B, to construct D. Then D would -\ 3.:
provide a finer sample of the space of directions, since more directions weould be ' E}"\ﬁ__
sampled. In principle it should be possible for a sample to be complete at a given m

resolution. We formalize this idea as follows:

A spanning sel for a space V is a set of vectors which spans V' yet which is

not necessarily a basis. A spanning sct is a basis for V which has been extended

E\"\w

S |
e P

by adding other vectors. We conjecture that there exist certain spanning sets

o
a
'y

P

which might be employed to construct a complete planning algorithm without the

'1"‘. »

v
E 4 Yy
'~

]

ks
""
-l
3‘; >

Bumble strategy. What constitutes such a complete spanning se1? The analogue of

resolutic 1 for an arbitrary spanning sct B would consist in (1) the cardinality of _g'.

. . e e NN

the spanning set and (2) the uniformity of distribution of vhe vectors .,_ﬁ._"-j
L)

-.';N,J?«'

-_*-\.‘ >

97 v

. PR 1
~] L
%

s

R e N PRIy (0 o Bty I ST LS B R LV A A A A N N G (N R N TR AL g
m’:}:{%’h’:‘-{&\{Hmﬁ'iﬁ\i.nﬁﬁiyﬁﬂ'mﬁuﬁaﬂ'J\'A:" A ﬁ’;@vb;&'ﬁ!\ri‘m, A

B+U_B+

about the unit five-dimensional sphere S” in the tangent space at X. The greater
the number of vectors in the spanning sct, and the more uniform their distribution
about S%, the finer the resolution of the planner. The development of such a planning

algorithm requires surmounting additional theoretical and technical difficulties.

98

:'&ﬁx‘
720 A AR A T R b AR S S DY Y B T N N B e Y A A AT T A T
T R L G R e e e D S NS R AT

NN AR VIRV

§
|

\\\' '

AANNNNN\\N

Figure 2.5. An idealized illustration of the hit and rotate strategy. Some expert moves the robot
in dircction ¥ until a C-surface S is hit at coafiguration X. When the planuer tries to plan a
move from X, the rotation expert is ealled to caleulate a rotation away from S (in direction JS)
From the new configuration, direction ¢ can be pursued again.

2.4.6. The Rotation Expert

The rotation expert is built on the rotational operator Rotate, and is designed
to handle some of the spccial problems of moving through rotation space that are
discussed in chapters 3, 4, and 5. The rotation expert might be called to accomplish
a simple rotational subgnal, or in conjunction with some more elaborate strategy.
In particular, when a translational motion terminates by striking a C-surface,
forwarding mcessages are left for both the sliding expert and the rotation expert.
The former has been discussed as the “hit and slide” strategy (figure 2.4); the latter

is known as the “hit and rotate” technique (figure 2.5).

The first problem that the rotation expert must deal with is the “wrap around”

in rotation space. A subgoal ¢y can be reached in directions +$S and —(3, although

typically one is “shorter”. In cenjunction with the planning history, the rotation

experl, on successive applications to the same node, can develop strategies for

rocking back and forth on a slice of rotation space.

The Rotate operator is more constrained than the T'ranslate operator (in that

it can only be applied in :i;12), ;L.), and j;q‘S) lence the rotation expert must have

a method for approximating rotationzl trajectories (specified in angle space) which

are linear combinations of the rotational basis vectors, such as

ﬁ:at‘/}-}-b@-{—c&

for scme scalars a , b, and ¢.

In terms of the completeness of the algorithm, there is no neced for a rotate

operator in direction (2.4) (provided a path along 9 lies in open sets of free space).

In chapter 4, we show that a continuous path may be approximated as closely as

desired by a sequence of moves along the rotational axes, and that the n»mber

of staggered path scgments required grows oniy lineariy as the resolution becomes

finer. In practice this use of the restricted rotate operator has proved adequate

in our path-finding experiments. Ifowever, it is heuristically useful to realize such

paths as accurately as desired, since this allows higher level experts to suggest

arbitrary rotational trajectories. Given such a trajectory, the rotational directions

are ranked by magnitude of change, and the unexplored dircction of greatest change

is first attempted. Qu failure, or upon successive applications of the rotation expert ,ﬁ.}

T : . wind
to the scarch node, the other dircctions in (2.4) wil! be attcrepted. This process b
leads to the approximaticn of arbitrary pure rotations by a staggered sequence of ity

rotations along the axes. If the extent of each rotation is limited, the approximation
can be made arbitrarily line. To approximate motion in a direction such as (2.4), the
planner actually attempts scveral of the directions simultancously, which results in

a spanning “box” of rotational moves about the idealized trajcclory (in the absence

of obstacles).

.
>

Suppose a, b, and ¢ in the idealized trajectory (2.4) are positive. This yields

N
a set of positive, or “forward” rotational directions, and a sct of “backwards” fk(‘.q
rotational directions which can attain the goal. Which directions are forward and N
e >’
P

100

r 3 {" -l :':'

which are backward depend upen the distance (in the vector parameter space V)
of the goal from X, that is, on ng(G — X). For example, if G4 — X is negative and

small, then +$ will be a backwards direction, and —¢ will be a forward direction.

The rotation expert .devclops and ranks these scts of forward and backward
rotational directions. By examining the planning history and the local geometry of
C-surfaces at X, these sets of directions are ** “urn pruned. In particular, local
C-surfaces that would block a particular rotational motion are detected. IFFor a
direction 9, this is done by examining the magnitude of the directional derivative
in 9. The importance of such an impediment is then heuristically ranked by the
closeness of the C-surface at X . Special consideration is given to C-surfaces which
have a history of proving troublesome. For example, when an expert runs into a
C-surface, the reason for stopping is lelt as part of the move explanation. If the
rotation expert is invoked as part of a “hit and rotate” strategy, then we must
cnsurc that the planner trics to rotate away from the C-surface(s) which blocked
progress. The rotational directions which paint away from C-surfaces may he found
by examining V f. The process of determining the rotational constraints from the
local geometry of C-surfaces is closely related to our earlier discussion of detecting

rotationally orthogonal C-surfaces.

Thus the requested votational trajectory and rotational goal provide a set
of desired rotational motions. The planning history supplies a set of rotational
constraints, and from the local C-surface geometry can be inferred a set of

preferred and prohibited motions. The consiraints, preferences, and prohibitions

are intersected with the forward and backward desires. This yields a set, of rotational
directions which will be attempted using the Rotate operator. Depending on the
kind of invocation, the rotation expert may apply the [2otate operator up to

some fixed number of times -this is particularly uscful when it must attempt to

approximate an idealized rotational trajectory which is a linear combination of the ' o

basic rotational directions. H':\?r_»".q

Canny (1984) has recently extended the Rotate operator for dircctions such as ‘\:::;Sz&
¢q. (2.4), corresponding to uniform rotation. e -.

Yy
101 '_-: o g

LTI CE (U S TR ST A SN S 3

. .. -
a

a4

T T R N N T N
Ly it R A A A A P N S A I AT A I g -'.:-\' Lol e e A
o A T T N) S R A e

e RS S
B Ca S 5
A A e e
‘ﬂ-‘E s ® » - -) C : k- -

L

a3
v

Figure 2.6. An idealized illusiration of the around «xpert. When progress for the moving object
in the goal dircction © is blocked, the expert attempts to find a C-surface which is rouphly
orthugonal o ©. A sliding motion (cither & or —) is ther planned along this level C-surface
{around the obstacle). The resulting scarch node is then expamded.

2.4.7. The Around Expert

The around expert attempts to circumnavigate obstacles by sliding around
their boundary. An idealized illustration of the around expert is shown in figure 2.6.
The around expert is similar to the sliding expert, except that instead of attempting
to find a C-surface which contains a path towards the goal, the around expert
scarches for a C-surface which is (roughly) locally orthogonal to the goal direction.
Next a path is pianned sliding along this surface in a direction %' orthogonal to the
goa) direction; the path is attempted using 2 local operator. Typically, this motion
will result in a secarch node s’ which is farther from the goal than the parent node,
5. Ordinarily, s" would not be explored soon, since other search nodes would appear
morc promising to the planner’s best-first strategy. In order tc give the around

strategy a chance, the around expert explicitly places s’ at the front of the scarch

102

queue and calls the planner recursively.

The around expert can also invoke the intersection expert. Recall that the
intersection expert normally tries to construct tangent interscction manifolds which
contain paths towards the goal. llowever, when cailed from the around strategy,
it can construct intersection anifolds locally orthogenal to the goal direction. To
construct the intersection sct of locally orthogonal level C-manifolds, we perform a

pairwise intersection of C-manifolds locally orthogonal to the goal direction at X.

2.4.8. The Suggestor

The suggestor is a strategy for proposing good subgoals in configuration space.
As we saw in Donald (1983a), onc of the problems with local operators even if
they are complete (that is, their closure covers configuration space), is that without
goad subgoals, they may take a long time to converge. The suggestor is a heuristic

strategy for setting subgoals in C-Space.

. . N
Kirct 2 VvArY psnarco |-.\1tu~n 10
A0S, & Very coarce alLice is

-

hrown over (-Space. This lattice is then
searched for a sequence Q of free configurations (not a path) stepping through the
lattice to the goal. If no such sequence can be found, then configurations on a
promising partial sequence are employed. These configurations may then be set as
subgoals, and the planner can be called recursively. The confligurations (Q represent
intermediate planning islands of safc confligurations. If paths can be found between
these configurations, then the find-path problem is solved. Qtherwise, expanding
from any partiail paths found can aiso prove useful, in that the plauning islands
effectively distribute the application of local experts and operators over more of

configuration space.

The suggestor complicates the connectivity of the explored ncighborhoods
graph. The ability to cxplore arbitrary subgoals and suggested paths requires
more complicated bookkeeping for neighborhood exploration: we must employ the
connect strategy, in order to know when partial paths link up. If partial paths
not rooted at the start ncighborhood are permitted, then the graph of explored
neighborhoods will not necessarily be connected, and the mark strategy will fail (the

mark strategy constructs a directed, spanning tree for a connected, roated graph

103

A an - La s e ALt Vel - - - TR
I N I N N T e e A T o o e e N N T AN TN AN S N N A T A

5

V¥ o
- LN

™ “w
LTS YRRt P % 'u‘ .

P ol S

2081

start

Figure 2.7. A path which was found using local experts. This find-path problem is very casy (it
is used as an example in chapter 1). :

of cxplored neighborhoods). Iappily the connect strategy will succeed, since it is

defined on an arbitrary graph. An algorithm for the connect strategy is discussed

in section 2.1.2.

v 104

A o A L P R T N el e Tl T a0 L -(‘..'\‘.' ',-.;.'_;.1{.{";.'_;.{-_:.‘_‘.-_ DN PINENE _:qf.r-_f.".f_'_l_:-' S

e Vi LA 5 > gt LN PN I

Listing I: The log of expert explanations for ihe path in figure 2.7.

{find~path +el *gl)
Verifying the start and goal points...
start : (00011 11), goal : (-6 10 0 0 0 0).
Starting search, boes...
Exploring (0 0 0 1 1 11)...
Local Expert: I trauelated siraight towards goal, reaching ((-1 1 0 1 1 11))
Exploring (-1 1 01 1 11)...
Local Expert: I S1id along a level C-Manifold, reaching {((-6 1 ¢ 1 1 11))
Exploring (-6 1 0 1 1 11)..,
Local Expert: I translated etraight towards goal, reaching ((-6 10 0 1 1 11))
Exploring (-6 10 0 1 1 11)...
Rotation-Expert: Found O guiding constraints on rotational motion.
Rotation-Expert: Interoected Rotational Constraints with deslred
rotatione yilelding poesible motions in
((MINUS PHI) (MINUS PSI) THETA).
Rotation-Expert: 1 am trying to rotats in (PLUS THETA)
Local Expert: I rotated to reach ((-6 10 011 0})

Explering (-6 10 011 0)...
Rotatiun-Expert: Found O guiding constrainte or rotational motion.
Rotation-Expert: Intersected Rotaiional Constrainte with desired
rotations ylelding possible motlong in
((MINUS PHI) (MINUS PSI)).
Rotation-Export: T am trying tc rotate in (MINUS PHI)
Local Expert: I rotated to reach ((-6 10 0 01 0))
Exploring (-6 10 001 0)...
Rotation-Expert: Found O guiding constraints on rotational motlon.
Rotation-Expert: Intersected Rotational Constraints with desired
retations yielding poesible motione in
((MINUS PSI)).
Rotation-Expert: I am trying to rotate in (MINUS PSI)
Local Fxpert: I rotated to reach ((-6 10 0 0 0 0))
Explorirg (-6 10 0 90 O 0)...
{vuccess!] Saving and Drawing final path..,
Back to Lisp Top Level in Lisp Listomer 2

z:}'o}'a':-:‘

=y MW W AR B LFW M WHCW LF W Y AR AW

L 19)

Niwi

Figure 212. View II: (frame 19), The final configuration.

2.5. Examples of the Local Experis in Use

In figure 2.7, we show a very simnple example of a path found using local

The “Thor’s Hammer” example in chapter 1 was produced by disabling all
experts, and employing only the Bumble strategy. {Please refer 1o this figure). In
the accompanying figures (2.8-13), we chow a path found by a strategy comprising

all the experts described above. The solution path is very different, and tends to

slide around obstacles instead of finding convoluted paths between them.

Figures 2.14-21 show the solution for a find-path problem in a cartesian

workspace. A carlestan workspace is a bounding box beyond which the reference

WA PR &5 N KK X P v e

point may not translate. However, the bounding box imposes no restrictions on
rotations. The Movers’ problem in a cartesian workspace is simnilar to the motion-
planning problem for cartesian manipulators, and the L-shapcd object may be
thought of as the (wrist and) payload. First, we show the reference point on
the L-shaped object. Next two views are prescnted of the path found within the
workspace, around a large, diagonally-placed obstacle. View (II) is a view frem
the side; view (I) is a view from the top. Only the back faces of the rectangloid

workspace are shown. Since the rotatior from frames 13 to 14 is very larpe (> =

108

\ :
P LAY N R N T L W Ty WL) S . L - - I -
O e N PN T A R OV S ORI "‘\'\R:'\‘-‘:;‘p' ;,_

LSLSENYY PRI ST N

[3)
(6]
1[9]

L, eed ——
— ol ':
= 2 S
O IS O
—
= —— r':c
N — = -

Figure 2.8. View L (frames 1-9). These 18 frames show a solution path for the “Thor's Hammer”
Moves's problem. Local exp.cts (as described in this chapter) are cmployed o slide the moving
ohiject along level C-Manife!ds. Three views are showu. The final conliguration is only visible in
view I} (ligure 2.12).

107

N N T AT AN
¥ '\'(:ntn\h‘:h\h".'-*h‘cﬂ{ A X

—‘-H. v..\w .n ‘P.‘-'.-I
t\‘:\{“l \."\‘C’:t“ {

-

-
£

5

{“

Y

3
=))
T [
b T gy | ’
o T 3
b = o
er
—{1
p— r— ey
© [} o
= = ha
Figure 2.9. View L: (framea 10-18).
108

e R N R SR R o

‘Ex?&&?ﬁz’é:?&i‘%ﬁ%

— p —
L4
&, — 2,
-/

[2}
is)
(2]

™
9
(7]

Figure 2.10. View H (frames 1 9) of the Thor’s hammer Example using Local Experts

109

T I CE— . — ————— - " -

Eﬂg@ £
= =P
‘ W ‘E

Figure 2.11. View II: (framcs 10 18).

110

2y
X5

%

.
X%

2
L R ¢

[e]

N

i

~ [
())

an‘ =]
Lol [
s -
) od

Figure 2.13. View IlI: (A detail of frames 1 tirough 6).

111

The reference puint on the L-sheped moving object

Figure 2.14. The reference point on the L-shaped object.

in the —t) direction), a detail of the rotation is also shown.

2.6. Path Planning versus Discrete Intersection Detection

Irnagine a brute-force pianner which discietizes configuration space, places t
robot at every point in the discretization, and tests for intersection. This would
yicld a discrete set of configurations where the robot could be placed. Alternatively,
the tests could be structured in a search. As stated so far, this is not collision-free
path plenning. Path planning ensures that a path exists between each conliguration
on the path. It has been argued that if the intersection-detection is done at a
fine enough resolution then a path will have been eflectively found. At a given
resolution, it is possible to bound the size of the intersection between the robot
and any obstacle whick can occur betwecn intersection checks. This bound grows
smaller as the sampling of the space grows finer. By growing the real-space obstacles

by this bound, it is possible to ensure that no collisions occur betwcen discrete

12

L _ ___ e R N S S S SOl S S Sy Sl SV S Oy Sy R0 RV DAL LOE DV RV IV IOg Tl a v s

Y
)

=\ ey
o]
//
'.?\ ™
ot ned =]
*‘ h'ﬁ—h\‘
: b —.
E
.
r
& A
: 74
k
&
2
-\ — o\N— =

Figure 2.15. Solution Path, View (11), frames (1-9)

L

¥ A 3 -:'_\

. 2 o e L y . . -
P O R U A T IR S LT

[12]
18]
(18]

(11}

LT s R TS
\%’ / \C\

(14}
{17)

-

[13]
[16]

(103

Figure 2.16. Solution Path, View (Il), frames (i0-18) !
Lokt

l\ TR

h%

I~ 4

1 P

| | »
| e AR o N N T i NN, T At e at w v N
. A L P S PN IR A Y, 0L AR Ne 4-"-.#‘_-'._-' y

L
»

[21}

~—

{20}

=
-
Figurc 2.17. Solution Path, View (l1), frames (18- 21) C; v
v e
RN,
Lot
9
115 v
) d
S Y

0

T T 1 g e T T N T T T A T N N I TS G S SR SR T J':"j‘\.’

(4]
[7}

\\
D

Figure 2.18. Solution Path, View (1), frames (1 9)

116

MMMMWN&\LWNN{Q\QHXOA‘\km"&?&i@{\"e&x-}a.%:*}{'wh}:'\}-ﬁnwx'}&“}ﬁrﬁ?}i"

[13]

kel

/
K<
¥

B

[14])
(17

\ =
» "h h
RN

g—"

\

=
-~
-

(-]

[15]
'?;‘J‘J

Figure 2.19. Solution Path, View (1), franes (10-18)

117

AL
R L R T T T T TRt
ST A NN W AT PO AL)

AoN

"

WY 4

R A N P D R A N N R S

N St Vst WA ARy

ke

O
\\

(“] % |

Figure 2.20. Sclution Palh, View (1), framces (19 21)

118

8
U Vg S i g WY A Y N o T A L o L L S T e 3
A A S e S R s T R

o T TR R R TR R SR T T s T R T T T T L 2

s
'L:;‘;‘ ‘.:
S.'IS.' “a-.
D{nﬁ?«\g
S
. . VR
Figure 2.21. Dectail of the rotation from frarnca 13-14. o
intersection checks (Gouzenes (1983)). Of course, if the resolution is insufficiently A y-
" B
fine, then the obstacles may be grown so much that no path can bLic found. : ‘:_ &
q’\\"‘!‘a-_‘f
For gross motion planning in an uncluttered environment, this approximate &* (’,
method may perform reasonably well. In complicated environments, however, the ot
resolution will have to be fine in order to ensure that paths are collision free "\' "_.
ki .i i
without growing the obstacles so much that no path can be found. We will k’* '; .
0,
compare the asymptotic complexity of the discrete intersection mecthod with the "?.‘::-"‘:,:.
.) (] ‘.gﬁ" h
Rotate operator. (The Rolate operator is the most complex local operator). The i il
fundamental observation is that the complexity of the discrete intersection method &?ﬁ k.
’,'!. Byt -
varies linearly with the sampling resolution, whereas the complexity of the Rotate :f{\{:i 7
SR
operator is independent of (any) resolution. This is because our discretization is :%m" ;

E

quite different: a lattice is thrown on the space in order to record the state of the

. . R
planner and the connectivity of the explored neighborhoods. \?:Q\"‘i 4‘-‘;
! n,:§‘q (
| MOLYYS
119 NSRS

P
N

B e P e e ot £ O I Tt s NN

IR
o, 4
VAP AT AN LA R A Y 0 s oo o e

Consider the foilowing. Suppose X and Y are configurations on a rotational

trajectory in direction 55 Suppose further that the robot is composed of m convex B,
polyhedia containing k generators cach, and that there are n convex obstacles b ‘:‘:'
containing j generators each. The number of faces on a robot polyhedron or an fs'é': .
obstacle polyhedron is O(k) (respectively, O(5)). To perform one intersection check E:::':"' :
(at a single configuraticn) for one robot polyhedron and one obstacle polyhedron P
requires time O(log?(j + &)) (Dobkin and Kirkpatrick (1980)). This theoretical '
intersection algerithm has not yet been implemented, but we consider it since it :Q‘ Y.

is the fastest known. To perform a check (at one configuration) for the entire
robot against the entire obstacle environment requires time O(mn log?(7 + k)). Now
suppose that the path segment [X,Y] must be sampled 7 times for the quantizing k“\‘

iniersection checker. This requires time :“:’

O(imnlog®(j + k)).

In chapter 5, we show that our planuer’s Roiate operator could determine whether (oA
there cxists a path from X to Y in time O(N log N) (where IV is the number of T
C-surfaces). In chapter 3, we show that N = O(mnjk). Ilence the complexity for g:'
Rotate is A

O(mnjklog(mnjk)) = O(mnjk(logm + logn + log j + log k). A
Rotate ensures that there exists a path from X to Y without growing the real-space
obstacles, and does not involve a resolution factor 1. Holding k and j fixed, the

relative asymptotic performance of the quantizing intersection def :ctor and the

Rotate operator will depend on whether or not

i > log(mn).

The coustants 7, 7, and k will depend on particular workspaces and find-path

:: problems. However, we belicve that in order to be reasonably sure of the safeness
{
»
120
: R
k. -« " LA

X Tl TS e T T s R, % o -‘.\'.\. e Sy ~\ u“-..\q At AN A A $!| A e My \q',‘h -r%r\r“\’ " ‘_'pr\\(__.- I -‘(‘-h.‘--/,‘- e
AL PGy -u\a’&".‘n.*";.\l.".n.\h‘u. PR n."}.:}{'u'..\'b(' n}b\'&".‘:nh.'cf\." N AN AC AT Y -.n"u\t'«'ﬂ'u‘u‘:{‘:! ,_-\\\.(: PRSPV

of a path between configurations without growing the real-space obstacles too
much, ¢ may have to be quite large. This is especially true in rcasonable sized
environments. So as mn increases, the workspace becornes more crowded and/or the
robot becomes more complicated, and the sampling rate will have to be increased.
We think it unlikely that the sampling rate will grow only logarithmically with
the workspace complexity. Moreover, the theorectical O(logz(j + k)) intersection
time for the Dobkin and Kirkpatrick (1980) algorithm assumes that the solid
models of the m robot polyhedra are precomputed. (If the solid models must be
computed for each configuration, then this will take O(km) additional time per
sample point). In addition, for a polyhedron with k faces, O(k log k) preprocessing
time is required by the algorithm (for each intersection check), which would
yield an even higher complexity for the discrete path planning algorithm. At this
stage, since the algorithm is unimplemented, it is ucclear whether some sort of
lazy evaluation, parametric representation, or cflicient precomputation could be
employed to reduce the compiexity of iterative application of this intersection test.
Most implemented intersection detectors that are reasonably robust have time
complexity O{(5 + k)log(j + k)) or O{(j + k)?). However, it is possible to employ

minimum distance checks, or O(7 + k) intersection checks in some cases.
Summary

In a practical planning systemn, there are, of course, other considerations. For

example, our employment of the Rotale operator requires time to update the lattice.

The main point is as follows: on a lattice of spacing d, to verify the safeness of a
path of length d7, the discrete interscction method requires at least time C{imn),
whereas the Rotate operator requires time O(mnlog(mn)). The discrete method '
actually does not ensure safeness, but merely that the intersection “size” is no .
greater than some function of d.
Competence versus Performance :3-(._6,.,
b-‘(. s
H' .::'

. . . A
We have shown that the relative performance of the two algorithms will largely ;'_'\" M
. \ . ¢ e
depend on the constants in the problem, For gross motion in uncluttered workspaces " ‘t:?,
the discrete intersection algorithm will probably perform better. In complicated, e M
. . . . Lot
crowded environments, or in problems requiring motious close to the obstacles, the *:'.‘:-u o
et
E’r"m
- o
121 SN
yCehe |€j
AN

= HRM 3] e AN S AN TR S S N e P YRS b W AR I T P Y Nte TG S e S S SN T T Y e - > o N

required sampling rate will probably be prohibitive. In addition to the question
of parformance, we should also mention the issue of competence. (In linguistics,
competence refers to the knowledge base, and perfermance refers to how well it is
used). The representations we develop in subscquent chapters are applicable not
only to the find-path problem with six degrees of freedom, but alsc to the class of
geometric planning problems described in chapter 1 (for example, fine motion, and
planning with uncertainty). It is clear from previous work that these problems are
within the competence of the representation we develop for %3 X SO(3) (Mason
(1981), Lozano-Pérez, Mason, and Taylor (1983), Erdmann (1984)). At this point we
have no indication that these problems are within the competence of the discrete
interscction method. (Find-space, however, can be accomplished using discrete

interscctions).

w, o
"l

T S R e R SR TN R
R L N N D AN S L R TNV 0

3
Questions ¢f Representation: C-functions and Applicability
Constraints in a Six Dimensional ConfigurationSpace

In this chapter, we first present a formal fraruework in which several open

uestions about confliguration space constraints may be reselved, This framework
has been discussed informally in the first two chapters. We then proceed 4o construct
and prove a set of theorems about the domains and domain topology of C-functions

for the classical Movers’ problem with six degrees of freedom.,

These theorems allow us to define the appiicability constraints ou C-functions for
the Movers’ problem in 83 X SO(3). Every C-function characterizes a constraint on
motion only within o certain region of rotation space. Determining what constraints
are applicuble at a given oricntation (or range of orientations) is of fundamental
importance to the mathematical framework for the spatial planning problem: in
order to plan using constraints, we must know where (al what orientations) these
constraintls are applicable. Recall that each C-function is generated by a pair of
boundary cells (a, b), where ¢ lies on the boundary of a moving polyhedron and b on
the boundary of an obstacle polyiwdron. Put simply, the applicability constraints

dectermine what boundary cells a and & can interact at a given orientation.

3.1. Definitions and Conventions

Let. A denote any rigid, convex set. A(©) denotes A rotated to orientation ©.

Formally, if © is an orientation, and R(©) is the corresponding rotation operator,

123

L]

PR

Ly
A

then A(S) denctes R(8) applicd to A. As akind of shorthand, we refer to A(©) as “A
at orientation ©,” or “A rotated to oricntation ©.” For cxample, il F'is a face, then
F(8) denotes I? at orientation ©. F's normal, N, rotates with F', and is denoted
N(6). We assume face normals are outward-directed from the polyhedra they
bound. We will in general use A to denote a convex moving polyhedron, and B for a
convex obstacle polyhedron. If ¢, is an edge of A and mid(e,) denotes its midpoint,
then mid(e,(©)) denotes its midpoint at orientation ©. At this point it is not
convenient to commit ourselves to any paiticular representation for 3-dimensional
rotations. Ilowever, the reader may without essential loss of gencrality interpret
v(8) (for v € R?) as the rotation matrix R(O) applicd to the vector v, where R(©)
might be parameierized by Euler Angles. Since R(©) is an orthonormal matrix,
[R(B)]~! = [R(©)]T can be cmployed to rotate a plane which is represented 2s a
4-dimensional vector. This operation yields the rotated normal N(8) of course (see
Paul (1981)). However, note that the results of this chapter are independent of any
particular rcpresentation of rotations, and that R(©) is properly a generic rotation
operator. u - v denotes the standard inner product on R* of 4 and v. If u and v are

coruplicated expressions, however, we will use the notation (u,v).

The six dimensional configuration space M* X SO(3) is formally defined in
chapter 2. X will denote a2 configuration in this space. We will identify © with
R(8) and writc © € SO(3). Writing X = (z,©) makes explicit the translational

component of the configuration (z) and the rotational component (6 or R(©)).

9 denotes the boundary operator. For exampie, if /' is a face on a poiyhe iron
D, then 3F denotes the ring of edges which bound F. a1 denotes the faces of 1B,
Jde for an edge e deaotes ¢'s vertices, and so forth. The coboundary operator iy the
dual of the boundary operator and is denoted 6. The coboundary of a vertex is the
sct of edges incident there; the coboundary of an edge are the faces which the edge
bounds; and the coboundary of a face is the zero, one, or two solids it bounds. In
chapter 5, we provide a formal definition of boundary and coboundary using the

chain groups; alternatively, see Hockirg and Young (1961} or Gibliu (1977).

We denote the faces, edges, and vertices of a polyhedron I3 by faces(13),

edges(D3), and veri(D3), respectively.

If S is a set then 7(S) denotes its interior, and &S its closure. S == 2(S)UaS.

We denote the classical Movers’ problem with six degrees of freedom by 6DOF.

3.2. Representing Constraints in Conliguration Space

Lozano-Pérez (1983) showed that the C-Space obstacles can be represented as
an interscction of a finite number of half-hyperspaces,! where each hall-hyperspace

is represented via a constraint function of the form

Fi: R X S0(3) - ¢

where the sign of f;(X) determines whether X is inside, on, or outside the C-Space
obstacles. Ilowever, when rotations are allowed, cach constraint function is valid,

or applicable only within a certain region A; of the rotation space:

fi WX A - R (4; C SO(3)).

We call such a function f; a C-function. We consider the robot and obstacles to

be modeled by the (possibly overlapping) union of convex polyhedra, and define

a boundary cell to be a face, edge, or vertex of such a polyhedron. C-funciions
model censtraints on motion generated by pairs of cells (ga, g,) where g, and gy are
boundary cells on the robot and on an obstacle, respectively. Lozano-1érez (1983)
identified three types of intcractions: (face,vertex), (vertex,face), and (edge,edge),
which to preserve tradition we shall term type (a), (b), and (c) constraints. However,
vhese interactions can only occur in certain orientations; for example, it is easily seen
that although two cuboids generate 144 type (c) constraints, at any fixed oricntation
only certain edges can interact and hence only certain type (c) constraints are
applicable, "Uhe region of rotation space where a C-funciion f; is applicable is it’s

applicability region, 4l;. The domain of f;, then, is ®* X 4;.

For the two-dimensional Movers’ problem, the rotation space is the 1-sphere

and the applicabilily segions A; are simply sectors on S'. While Lozano-érez

Trar a moving ohjedd and obstacks represented as overlapping unions ol convex polyhedra.

125

N

1983) was able to deline the form of C-Space constraints f; for 6DOF, previous
I

work has not been able to formulate the applicability regions in SO(3).

We begin by defining CO C R% X SO(3), the space of forbidden configurations:

€O = XI\G/Ca(X)} (1)

where C,, is a constraint sentence (sce Brooks and Lozano-Peréz (1983)). a is indexed
by C-Space obstacles. For each C-Space obstacle O,, C, maps a configuration X
to truc or false, depending on whether X is inside O,. (1) states that if X is inside
any C-Space obstacle, then it is in CO.

For X = (z,8),

2

Calz,0) = N(© € 4 = £(z,©) < 0) (2)

Let us parse (2). The index ¢ ranges over the set of all C-functions {fi,-.-sfn}
which define the C-Space obstacle O,. We call such a set of C-functions a family
of C-Tunctions. This family is gencrated by considering pairwise inleractions of
features on the boundary of A and features on the boundary of B, where A is a
convex polyhedron on the moving object, and B is a convex obstacle polyhedron.
For a two dimensional example, refer to figures 1.29-32 (chapuer 1), which illustrate
an obstacle polygon B with four vertices, and a moving polygon A with three
vertices. For these two polygons, the family of constraints generated corresponds

to all possible interactions of their cdges and vertices:

family,p(A, B) = (faces(A) X v;ert(B)) U(vcrt(A) X faces(lj’))

= (tev ensend x {od, v v i)) U({onr om0} X {efochreheh)

Each pairing, for example (ej,v]}, generates exactly one C-function f;. In three

dimensions, a family of C-functions corresponds to a sct of constraints resulting

126

LI >'.
R NN
e cmomnomne i saA s E AN MR MR WKL L LR YL LW L U VW U A AL AU U LA A A U At et A At 1T At kU S

)
" g

from the possible interactions of one polyhedral component of the moviag object,

and onc obstacie polyhedron:

Samilyyp(A, By = (faccs(A) Xvert(B)) U(ve'rt(A) X faces(B)) U(edges(A) Xedges(B)).

Of course, in both two and threce dimensions, at a given orientation, only a subset of
this family is applicable. For each C-function f;, there is an associated applicability
region A;. Equation (2) for C, can be parsed as follows: for a configuration X, for
each C-function f; such that X is in the domain of f;, f;(X) must be negative-valued
(or zero) for X to be inside the C-Space obstacle Q4. To determine whether X
is in the domain of f;, test whether the rotational component of X is within the

applicability region A;. ' ‘

Nexy, we define

F =% xS0(3)—-CO

to be the space of free configurations.

Now, for cach C-function f;, A; C S0(3) is the corresponding portion of
rotation space where f; is applicable. We construct A; as the intersection of a set

of hali-hyperspaces on SO(3):

4= {0 € 503 | \(ss(8) > 0)) 3)
J

where g; : SO(3) — R is an applicability constraint function (ACF). A C-function
i is said to be applicable for a configuration X = (z,0) if © € A;. In this chapter,
we wil! derive, and prove, the forin of the ACFs. Geometrically, the applicability
regions A; are complicated three dimensional manifolds (with boundary) on the
projective 3-sphere. Their boundaries arc the two dimensional manifolds ker g;. (7
indexes over the set of functions used to construct A;. There are typically three or

four g;, as we wili see later).

127

*‘!Mﬂﬁa:uhaalﬁm.ﬂm\mm'ummﬁmmu‘x.m;um L L L Y AN A W L e N

The form of the applicability constraints was heretofore unknown. Many of
the representational and algorithmic issues for gecometric planning problems with
six degrees of freedom rely on a corrcct formulation of the applicability constraints.
With these advances, however, the mathematical framework will be complete, and

we can construct the planner of chapter 2 which exploits the geometry.

The work of Breoks and Lozano-Peréz (1983) dealt with surfaces in the C-Space
N2 % 8!, which are called C-surfaces. The obvious extension of this concept for
6DOF is a C-manifold in R* X SO(3). For a C-function f; we definc a level
C-manifold to be the set of configurations X where f; is applicable and fi(X) = ¢,
for some level £. Thus a level C-manifold is the level sct f;7'(£). Of particular

interest is the C-manifold

ker f; = f,_l(o)z {X | fi(X)=0},

which contains a boundary patch of a C-Space obstacle. Since in the literature,
C-manifolds of this form have been called C-surfaces, we shall also employ this

term.

We now define pathis in C-Space. Given a start configuration s and a desired
goal configuration g, a successful collision-frec path is a continuous function
p:1' = R X SO(3) such that p(0) = s, p(1) == g, and p(I') C F. I' denotes the

closed unit interval, [0, 1).

3.3. The Geometric Interpretation for C-functions

Consider the interaction of an obstacle polyhedron B and a moving polyhedron
A, where both A and £ are convex. Let fy, be in the family of C-functions generated
for A and B. f, models a constraint on the motion of A. For example, f, might be
generated by considering the interaction of a face of A and a vertex of B. For a
given oricntation O, the projection into W} of any (applicable) C-manifold f;'(())
is a plane corresponding to a face of the polyhedron resulting from the Minkowski

sum of (OA and 3, that is,

128

BOA®) = {b+a(0) b€ Bac DA}

where ¢(©) denotes vector a rotated to orientation © and QA = {—a|a € A}
(Note that in constructing (3A(D), the “negation” takes place before the rotation).
B A(©) is the projection into R3 of the C-Space obstacle at orientation ©. In
effect, we have paramecterized the plane equations of faces of B & A(O) by ©. Here
is the form of the parameterized plane equations derived by Lozano-Pérez (1983):
a;(0) is a vertex of QA{O) and b; is a vertex of B. Recall that the equation of
a plane in R3 can be expressed as {z | (NV,z) == (N,q)}, where N is the plane
normal and q is a reference point known to be on the plane. Thea C-functions take

the form:

fo(z,8) = (N(6), z) - (N (), (a:(©) + b;)) (4)

where z is a poiut in ®°, N(Q) is the real-space component of the C-manifold
normal at orientation ©, and is defined as follows: for a type (a) C-function,
N(©) is the normal of a face of ©A(O). For a type (b) C-function, N(©) is the
normal of a face on B, and hence is constant. For a type (¢) C-function, N(©) is
the cross-product of an edge on B and an edge on E3A(O). Furthermore N(©) is

normalized to a unit vector when it is non-zero.

my. .
T

remratrie wipnife o o f
i¢ gComaGetic sigiiacance o1
5 b

Jplz, ©), is now clear. The value of j, represents
how far the (reference) point z lies above the plane of a face in the ©-parameterized
Minkowski solid. (Assume (z, ©) € I7). When the projection of z falls on the fp-face
of the Minkowski solid, the mectric provided by f, represents the iranslaticnal
distance to a collision. When the projection falls outside the face, the value of f,
represents the translational distance to the planc of the fy,-face. Hence even though
there is no convenient way of talking about distances between conligurations in
R X SO(3), we can cmploy the values of C-functions as a metric on the distances
of the moving object from obstacles at any configuration. This metric will become

important in chapter 6.

129

’ L
4 A - LEASALAYS L. i S T T N NI VR W W U \ . -y - "m
T e T e T Dy T O TN e N T A S X et Y O

3.4. Redundant Constraints

In chapter 2, we gave an informal definition of a redundant constraint (see
figure there). We now give the formal definition of a redundant constraint for
a configuration X € F. Intuitively, a redundant constraint is one subsumed by
nearer, intervening C-functions (lower C-rrianifoids). Let C denote the set of all
applicable, positive-valued C-functions at X = (x,8). For each f; € C, let 5; be

the projection into R* of the kernel of f; restricted to orientation €, That is,

§; = {y E!R“ I f,-(y,e) = 0}.

Note that s; is the projection into R* of the tangent hyperplane at © to the level
C-manifold for f;. Intuitively, s; is the plane of the face of the Minkowski solid

determined by f;, at orientation 6.

Now, iet h; be the hail-space of %* bounded by s; containing z. Constructing

ks

3

yiclds a solid S in R3. Those half-spaces bounding S correspond to the non-redundant

constraints at X .

130

Yo

v

TIN(Q\
MRS v n s w

Figure 3.1. ,

3.5. Applicability Constraints for type (a) and (b) C-functions

We are now in a position to derive the domains of the C-functions. To define the
applicability constraints, we consider a family of C-functions in isolation (that is,
an environment comprising only the obstacle B and the moving polyhedron A). We
perform an analysis to see what generators can interact at what orientations. While
C-functions are defined on the “ncgated object” ©A(Q), applicability constraints
are defined from the “positive object” A(B).

Definition: Consider a constraint ¢, generated by (ga,g;) where the pair (g4, gs) is
either (a) a face of A and a vertex of B, (b) a vertex of A and a face of B, or (c) 2n
edge of A and an edge of B. We say c is applicable at orientation O if some pure

translation of A(©) can bring g4(©) in contact with gy, such that

1(A(©))Ni(B) = 0.

i
!
!
;
I
!
i
!
'
!
|
|
;
y

Sec figure 3.1. Let f(6) be a face on a moving polyhedron A(©), with a normal
N(©). Let b; be a vertex on obstacle . (f,b;) generates a type (a) constraint. Let
R be the sct of adjacent vertices of b; on the edge graph of 13, that is,

R = { b, € veri(D) | éb,‘ﬂtsbj #0}.

It is instructive to parse the definition for I2. (Recall that § denotes coboundary). b,
is the set of edges incident at b,,. If two vertices by, and b; have disjoint coboundaries,
then they are not adjacent on the edge graph of . If their coboundaries overlap,

then the common clement is the edge counnccting by, and b;.

Theorem UL 1: Atype (a) constraint gencrated by (f, b;) is applicable at orientation
© if, and only if, for all b, € R,

by - N(8) — b; - N(©) > 0. (3.1)

If the type (a) constraint is applicable, then (3.1) holds for all vertices by, of B.
We will show that considering the vertices in It provides a necessary and suflicient

condition for applicability.

Proof: (&) Observe that applicability is invariant under translation. We

RPN SRS TR SRS RRNFIRYS RN PO S Y o & S IS S I
i Ail5107In the woi KSpace 50 uvnav uit piraie o1 J(\7) CONt&ilis e origin.

z € %3, - N(O) is the perpendicular distance of z from the plane of the constraint.
Since face normals are outward-directed, when this distance is positive, then z lies
above the plane of f(8). If (3.1) is true, then when b; is brought te rest on the
planc of f(8), then b - N(8) = 0. Now, for all b, € I, b, - N(6) > 0. Thus all
adjacent vertices to b; are on or above the halfspace boundary. Since A and B are

convex, their interiors cannot intcrsect.

(=) If we can bring b; in contact with f(8©) while maintaining the disjoint
interior criterion, then we have b; - N(©) = 0. No b, € R can dip below the surface
of f(©), since then the interiors of A and B would intersect. Hence each b, must

lic some distance d > € above the plane of f(©). &

Figure 3.2 IS ‘;.".".i
- - f\[..““_ o

Now, let f be a face of B with normmal N. (See figure 3.2). Let a; be a vertex ,’\g £

of A, and o

R = {a, € veri(A) | 6an[)6a; #0} NN

be the vertices adjacent to a; on the edge graph of A. OASS ‘

Theorem IT1.2: A type (b) constraint generated by (a;, f) is applicable at orientation g' K -
@ if, and only if, for all a, € R, %

a,,(G) N — a,'(e) N Z 0. (32) ."I'

Proof: Symmetric case of Theorem (I[L.1). n "j‘t_r ":24;;-‘_

Consider

9k(8) = b, - N(©) —b; - N(6) (3.3) &y

133

T
Vet kel
H ..i(‘fi“ﬁi (;; H
ol MR
R
e
e
'k‘;’g ’:2

. a

—

,5"4 ' -

sl -
o

ey

IR,
LI

:.'5.

)
. .'k',.f
Wk

Figure 3.3. The applicability region A, is the interscclion of the hall-hyperapaces where g 2 0.

as a mapping g : SO(3) — R. We call gx a type (a) applicability constraint function
(ACF). (There are scveral ACFs for one type (aj C-function—or indeed for any

C-function, and they are indexed here by k). For the symmetric case from (3.2), we

call

94(6) = aa(6) - N — a(8) - N (3.4)

a type (b) ACF. The region on SO(3) where gk is positive-valued defines a half-
hyperspace of SO(3) (see figure 3.3). (3.2) and (3.1) define the applicability region
for a type (a) or (b) constraint as the intersection of these half-hyperspaces. This

yields the conjunction promised earlier:

4. ={0€5003)| /\(gk(e) > o) }.

k

134

A C-function c is applicable if and only il for a configuration (z,®), cach of c¢’s
ACFs is positive (or zero) at 6, that is, © € A.. The number of ACFs for a type
(a) or (b) constraint is equal to the cardinality of iiie coboundary of the generating

vertex (which is the same as |R]).

3.6. Applicability Constraints for Type (¢) C-functions

Determining the applicability regions for type (c) C-functions (gencrated by
edge-edge interactions) turns out to be a bit more grueling. We can derive a set
of AC¥'s for type (c) constraints which arc analogous to g in (3.3) and (3.4). The
conjunction of these type (¢] ACF3s is a necessary but not sufficient criterion for
applicability. The positive conjunction (the intersection of half-spaces where the
type (c) ACFs are positive) forms two, disconnected regions in SO(3). It will become
apparent shortly how these regions arise, but let us pause, before bringing in some
complicated machinery, to survey their topology. In one region A the type (c)
coastraint is applicab'e, in the other £/, it is not. To determine which region © is
in, we use a sct of related functions termed disambiguating applicability consiraints
(DACs). Fortunately, the symmetric region A’ where the ACFs are positive but
the constraint is not applicable is disconnected from the valid applicability region
A (where the ACF's are positive and the constraint s applicable) by a region 4,
where the ACFs do uot hold (see figure 3.4). We will demonstrate that since A is
disconnected from A', it is possible to pian continuous paths within A with heed
only for the basic type (¢) ACFs. Both type (¢) ACFs and DACs are functions of
the form ¢ : SO(3) — R ; however, they arc considerably more complicated than

(3.3) and (3.4), above.

s’

Figure 34. The space $O(3) showing A, A’, and A. The type (c) ACFs determine whather © is
in the set A or in AU A’. The DACa determinc, for @ € A 4!, whether © is in R or A,

3.6.1. The Basic ACF's for Type (¢) Constraints

Let ¢ be a type (c) constraint generated by the pair of cdges (e,,ep). As
usual €q(0) denotes e, rotated to orientation €. We will define type (¢) ACFs
which provide a necessary criterion for applicability. In conjunction with the DACs
(below), the type (¢) ACFs form a complete characterization of the applicability of
type (c) C-functions. We employ the following construction: imagine trying to make
the midpoints of e, and e, touch while maintaining the disjoint interior criterion

for A and 5. We then allow A to pivot about

v = mid(e;) == mid(e,(B)) (3.5)

while maintaining disjoint interiors. Keeping (3.5), for what orientztions {values of

©) are the interiors of A and B disjoint?

136

Ny

:/I)'7//7’/’~/,/
e,

7@ :
.lo-(’} ':
-
Ny E

Figure 3.5. A scction view through ¢, (e is orthogonal to the page).

Let us denote the vertices of e, and e, as follows: (sec figures 3.5 and 3.6)
vert(ea) = (@i, a;+1) and vert(ey) = (b;, b;11). Now, ey bounds 2 faces f; and f; on
A; let their normals be IV; and N3. Similarly, let the normals for the faces fa and
J4 cobounding ¢ be N3 and Nj.

Theorem IIL3: If a type (c) constraint gencrated by (e, ¢p) is applicable at
orientation O, then

—dy(©)d2(8) > 0 (36)
and
~dy(©),(6) > 0 (3:)
where
di(®) = by - N{(8) — mid(cs) - Ni(8) (3.6a)

137

R Y L R L O O T O N L T T P

R G e A . B - - --mnw:wumwl\mum'wg

Figure 3.6. A scction view through e,(8) {c,(6) is orthogonal to the page).

dy(@) = b; - Ny(6) — mid(es) - Ne(6) (3.66)

d3(0) = a,(8) - N3 — mid(es(©)) - N3 T (37a)

v

dq(e)- = a,(e) . N4 — mid(ea(&i)) . IV4

~—~
SA,
-1
ot

.

(We express (3.6-7) in this form rather than as d,(0)dy(6) < 0 in order tu prescrve
the positive sign convention for all the ACFs).

Proof: Refer to figures 3.5 and 3.6. Again, since applicability is invariant under
translation, we transform the workspace so that mid(e;) is at the origin. With
mid{e,(0)) fixed at mid(ey), di(©) for £ = 1,2 1s the distance of b; abisve the plane
of f;; for £ = 3,4, this is the distance of g,(0) above the plane of f;. We allow
s to rotate about v = mid(cp) with 3 degrees of freedom. Observe that a; and
a;.1 may not dip below the surface of B, and that b; and 5;..; may not fall below

the surface of A. This is clearly enforced by considering only the planes of the

138

B S D P I\ ISR A A s o e e

il B 14

faces cobounding e, and ey I the type (c) constraint is applicable at ©, then d;(8)
and da(0©) can never both ke posilive, nor both ncgative, for in these cases e, will
intersect the interior of A. We see this as fellows: If d;(8) < 0 and dy(8) < 0, then
b; is inside both halfspaces, and some point on the line scgment (inid(e), b;) must
be inside A. If 4,(80) > 0 and d2(6) > 0, thea bjy is inside both half spaces, and

some point on the line segment {mid(e,), b;,1) must be inside A.

Hence dj(€)d,(6) < 0. This immediately yieids (3.6). A similar and symmetric
argumnent yields (3.7). g

159 .

3.7. Disambiguating Applicability Constraints (DACS)

Constraints

The basic type (¢) ACFs take into account edge-edge intcraciions, but do not
model the interactions of the faces they bound. In order to preserve the disjoint
interior criterion, we introduce Disambiguating Applicability Constraints (DACs) as
follows. DACs are constraints on the tangent vectors to faces cobounding ey and eg;
assuming that the basic ACFs have determined that © ¢ AU A', DACs discriminate
between A and A’. la fact, ihc DACs are necessary and snfficient conditions for
applicability. We split the type (¢) applicability computations between the basic
type (c) ACFs and the DACs for reasons relating to the algebra system, which

is described in chapter 4. Our proofs draws heavily on constructions employing a

separating plane.
The Scparating Plane Construction

Juin the midpoints of e,(©) and e, together as usual. Consider the plane P
containing v = mid(e,(©)) = mid(ec;), whose normal is €,(©) X e;. Assume without
loss of generality that e,(©) X e, 3£ 0. P contains both €, and e4(0). Suppose that,
the type (¢) ACFs for constraint ¢ arc positive-valued (or zero), i.e., (3.6) and (3.7)
hold. Ilence each vertex of e, is on or above the plane of one¢ face cobounding
€a(©), and cach vertex of €,(€) is on or above the plane of onc face cobounding e,
Refer to figures 3.6 and 3.5 or:ce more. By rcason of the ACF values for ¢ and the
convexily of A and B, some open halfspace Pp; of ®% which is bounded by P must

contain () entircly, and some open halfspace P4 bounded by P must contain
1(A(9)) entirely:

nc K.(Pu)

A(O) C r(Pa).

(Recadl that (S) denovtes the closure of a set S: &(.S) = +(S)US).

Now, if ¢ is not applicable, then 1(A(6)) N 7(#2) 3£ 0. This means that A C ()

also, since unless Py = [’, then 2 would separate ¢(A(©)) from i(B). We conclude

110

TR TLARIT 7R TS el | " TR TETE S3Fy S el e

that for all 8’ € A', {(A(8')) C Py and 1(}i) C Fy. Dy a symmetric argument, for
all © € 4, plane P scparates 1(A(O)) from i(I7). 'To summarize: If the constraint
¢ gencrated by (eq,ep) is applicable at orientation €, then 2(A4{©))N:(B) = @,
Therefore there exists a separating plane between ¢(A(9]) and 2(1}). On the ¢ther
hand, if ¢ is not applicable, there exists no such sceparating plane, for then the
interiors could not intersect. Ifurthermore, if €,(€) X ¢, % 0, then there exists
cxactly one separating planc that contains all four points vert(e,(©)) Uvert(ey). We

formalize these results in the following lemma:
In this lemma, we abbreviate e,(8) by ¢4, and A(O) by A.

Lemmalll4.1: (Eristence end uniqueness of the separating planc). Ioin together
the midpoints of e, and ep. Assume thaw €, X ¢, 3 0. The constraint ¢ generated
n .

by (eq,es) is applicable if, and only if, the plane P> containing e, and €, separates

the interior of A from the interior of 12,

Proof: (&) If P separates 7(A4) from (D), then i(A)N¢(B) == O. Thercfore the

constraint c is applicable. §

Proof: (=) Il cisapplicable, then there exists exactly one separating plane between
i(A) and ¢(B), and this planc is . To sec this, first observe that if ((A)N (D) = 0,
then by convexity there must exist some sopazating plane. Assume that this plane
does not have normal e, X ¢;,. In this cuse, the plance cannot contain both ¢, and

;. Since the planc contains the midpoints of both edges, it must intersect cither

N Voo s Tmdmmpaeando ¢l T daad ~F
H ; 3 inuGrl 1

o~
VLV

either A or B. Thus it cannot be a separating plane. Since there must exist some

separating plane, it must have normal e, X ¢;. @

The strategy for defining DACs is as follows. For cach face cobounding e, we
choose a point in the intericr of that face. The basiv type (¢) ACH's cnsure thai
ey is outside the interior of A(©), and that ¢,(©) I outside the interior of B; tne

DAGCs ensure that the faces cobounding e lie on thie oppostie side of P from the

the faces cobounding e4(@). If the type (c) constraint is applicable, then #(A(©))

must lie in a half-space bounded by P complemeniary to tie half-space bounded

BN
by P containing i(#3). The DACs ensure that if the faces cobounding ¢,(9) lic in o,
£
141 PR
A
T
.‘__."‘: -
N . I\ ey ~ FLER N A VW b LR YRE A RS S VB AMIA VAT AP, e Ve - v,
N L s N R R e e o SN N T Vb b B e SN e o e P

Il
4

Figure 3.7. The Tangent Vectors T3 and Ty to the faces cobounding ey.

k(F4), then the faces cobounding e, must lie in x(Pg), with P4 £ Pg. Since A and
B are convex, this suffices to show that A and B lie in complementary half-spaces
bounded by P.

The vertices of e,(8) and e, lie on P. Let p;, pa be points in the interior of the
faces cobounding €4, and p3, p4 be points in the interior of the faces cobounding
€. The DACs ensure that p; and p; lie on one side of P, and that p3 and p, lie on
the other.

The points inside the faces cobounding e, and e, are chosen as follows. For
each edge e on I} and A, we construct a pair of tangent vectors, (T}, T}), where
Ty and T arc tangent and interior to the faces cobounding e. T} and T are also
perpendicular to e. For an edge e, on A, (71(8), To(0)) will clearly rotate with e,
and A, maintaining these criteria. The tangent pair for e is shown in figure 3.7,

Formally, we procced as follows:

Ce(8)

Figure 3.8. The tangent pairs and normals for ¢(0).

Definition: A tangent vector to R* (O'Neill (1966)) is a pair (v,p) € R X R3,
interpreted as the vector v applied to point p. We will sometimes write v, for (v, p),

or, when there is no ambiguity about the point of application, we simply write v.

Definition: Consider an edge e on a polyhedron P. Let f;, f2 be the faces that
cobound e, and let N}, N3 be their normals. A tangent pair for e is a pair of tangent
vectors to 7, (T1,72), both applied to mid(e). T; is perpendicular to e and to Nj,
and it is directed into the interior of f; when applied to mid(e) (¢ = 1, 2). In other

words,

T; = k(N; X ¢€) (t=1,2)

where k € { +1,~1} is chosen to orient T; into the interior of f;. N; X e indicates
the cross preduct of N; and the directed edge vector for e.

143

Refer to figures 3.7 and 3.8. We will now construct DACs. Let (T, Ty) be the
tangent pair for ep, and let N3, N4 be the normals to the faces cobounding e;. Let
(T1(8), T2(8}) be the tangent pair for €,(©), and let N(©), Ny(©) be the normals
to the faces cobounding e,(©). Thus T; - N; = 0 {for 2 = 1,2, 3,4). Keeping with
this numbering convention, let f; be the face with normal V;. As usual, we imagine

joining together the midpoinis of e, and ,(8).

Let Np(8) be the normal to the plare P, that is, N (0) = ¢,(0) X ¢;. Assume
without loss of generality that Np(8) 5% 0. The plane containing mid(e(8)) =
raid(ep) with normal Np(©) also contains e,(0) and e;. We construct DACs which
ensure that {(A(6)) is on one side of P, and that #(D) is on the other side. To
ensure that the points mid(ey) + T3 and mid(ep) + T4 lic on the same side of P, we

have the constraint

sign(T;; . Np(e)) = sign(T4 . Np(e))

(T3 - Np(©))(T1 - Np(€)) > 0.

Assume without loss of gencrality that the signs are non-zero. The case where one
sign is zero is easily handled by examining the other sign. To ensure that the points
mid(eq(0)) + T1(©) and mid(e,(O)) + 73(©) lic on the same side of P, we have the

symmetric constraint
Sign(Tl (9) . .Nl:(e)) = Sign(Tg(e) . N,-(G))

Now, we must ensure that the two half-spaces are complementary. This is enforced

by insisting that the signs are opposite. All of the following must be true:

ki == sign(Ty - Np(0))

= sign(Ty - Np(©)) (3.8a)
k4 = sign{11(©) - N}(8))

= sign(T(0) - Np(8)) (3.85)
ks # kn (3.8¢)

Equations (3.8a-c) embody the DACs we require.

144

Theorem Il.4: Let ¢ be a type (c) C-function generated by (e4,€3). Assume the
tangent pairs for ¢, and e,, and normals to the faces cobounding ¢; and ¢, arc as

above. Then ¢ is applicable if, and only if, the all the DACs (3.8a-¢) hold.

Proof: (=) Assumec the type (c) constraint is applicable, but that at least onc of
(3.8a-c) is false. We will demonstrate a contradiction. Join the midpoints of ¢,(6)
and ep, as usual. If any of the DACs is false, then P does not separate i(A(9)) from

1i(B): a contradiction. g

Proof: (&) We show that if the DACs hold, then ¢ is applicable: if these conditions

are truc, then P is a scparating plane. Therefore the interiors cannot intersect, and

c is applicable. g

3.8. On the Structure of the Type (¢} Applicability Regions on SO(3)

In this section, we prove a theorem on the structure of the regions A, A, and
A for type (c) constraints, (sec figure 3.4) which yiclds an immediate completeness
result for our formulation of ACF's and DACs. As promised, we will show that 4
and A’ arc disconnected on SO(3), and that the region A scparates them. Qur

proof draws heavily on constructions employing a separating planc (lemma 111.4.1).

Theorem HI.5: A disconnects A from A’ on SO(3).

Prooft We first observe that by definition,

AU U 4" = 50(3)

(see (3.6), (3.7) fer confirmation). Recall the separating plane construction: we saw

that for all ©' € A’, {(A(€')) C Py and i(B) C Py. let Py denote the interior

£ D . D,
1 HEN i

Fothe mslemen _— 2’(5}’30. P\ R o svmmeotric arrsment, for all

agjpe A2y 4 GYNUDOWIC argumnicny, f a.

© € A, plane P scparates 1{A(Q)) from ¢(B). If AU A’ is path-connected, then there
exists a continuous function, p: I' -+ SO(3), such thai p(0) = O, p(1) = O, and
p(I') C AU A’ Furthermore, if A A’ is path-connected, then for all ¢t € I', either
1(A(p(t))) C Pn, or i(A(p(t))) C Py (assume without loss of generality that for all
t, ey X eq(p(t)) 74 0). Note that for all ¢,

PNi(A

LI N S

(1) = 0.

Hence in traversing the path p in rotation space, A is required to “flip” over P
from Py to Py, without its interior ever intersecting I°. This is clearly impossible

if continuity is to be preserved.
3.9. Orienting Type (c¢) Consiraints

Consider allixing mid(e,(©)) to v = mid(e;) as usual. Refer once more to 3.5

and 3.6. The cross prolduct

, Np(e) == e,,(e) X e

116

when applied to v will for some O point out of P and inwo I’4; for other ©,
Np(8) will point into Py and out of Py4. (Assume for now that N;(0) 5£ 0.) Hence
for some oricntations Np (@) is the correct (unnormalized) real-space normal for
constraint (eq, ¢); for other orientations we must einploy —Np:(©). When applied
to v, the real-space normal kNp(©) (for & € {+1, —1 }) must always point out of

'Pj and into P4. The following rule for choosing & is stated without proof:
k = sign(INp(©) - 1(8)) (3.12)

where I{8) = T(6) + T3(8).

However, it is easy to see that we need not compute this dot product each
time we use the C-function. k (and the orientation of Np(©)) will be invariant in
regions of A where the signs of the ACFs are invariant. For example, if k is positive
for some © € A4 and

d3(8) > 0 and dy4(©) < 0, (3.13)

then clearly wherever (3.13) holds, then k must be positive. Also, wherever
d3(€©) < 0 and 44(0) > 0,

k must be negative. This argument should be quite obvious if the reader imagines

how the cross product of the edges changes as e, pivots about mid(e¢;). This leads to

the following simple algorithm for orienting a type (c) C-function ¢. Essentially, we

can just compute (3.12) once, and record the signs of the ACFs at that orientation.

(i) For some ©, compute the values of d;(0) (7 = 1, 2, 3,4) for the type (c¢) ACFs.
If ¢ is not applicable, then stop.

(i1) If k& has not been computed yet, calculate k as in (3.12). (Assume k < 0). Record
the signs of d3(©) and d4(O) for ¢. We call this pair of signs the sign map for c.

(i) If a k£ and sign map have been computed for ¢, then compare the recorded sign
map to the current sign map for d3(©) and d4(©). If the sign maps are equal,
use k to oricnt ¢; otherwise use —k.

3.10. Singularities and Special Cases

Our analysis of type (¢) ACFs and DACs assumes that ¢,(8) and ¢ are ;nevcr
aligned, i.c., that their cross-product is never zero. In addition, our algorithm
for orienting type (c) C-functions assumes that no function d; is zero. The cross
product will be zero when ¢,(8) is parallel to ¢,, and an ACI will be zero when
either ¢,(6) is aligned with a face cobounding e, or when ¢, is aligned with a face
cobounding e,(©). In practice, these special cases will arise frequently. Fortunately,
they can be ignored. Consider the following: The vertices of e, generate type (b)
constraints with the faces cobounding e;; and the vertices of e, gencrate type (a)
constraints with the faces cobounding e,. In the cases where €,(©) is aligned with
e, or a face cobounding ¢, (or in the symmetric case), some of thesc constraints
will alse be applicable. In thesc aligned cases we say that the type (c¢) constraint
is subsumed by the necighboring type (a) and (b) constraints, because the disjoint
interior criterion will be enforced by the type (a) and (b) constraints alone. This can
a as follow .. (see fgura 3 B supposa same ACT, for example d3, iy zero-valued
at ©, and that © € A. Then buth mid(eqa(6)) and a;(©) can be brought to rest
on the planc of f3, while preserving the disjoint interior criterion. Since a;;(©)
is also lics on e4(93), it too may be brought to rest on the plane of fy. Clearly,
the type (b) constraints generated by (g, f3) and (a;y, f3) must also be applicable
at orientation ©. At this aligned orientation, the type (c) constraint ensures the
following: while mid(e,(©)) is on the plane of [3, a;(@)) must also lie on the plane
of fs. This is preciscly the condition cnferced by ihe equivaleni pair of iype {b)

constraints. Symmetric arguments kold for the other ACFs.

3.11. Level ACFs

For ACI's, there is an anslogous concept to a level C-Manifold. Let g : SO(3) —
 be an ACI for a C-function e. An ACF Boundary is the space of rotations where

applicable and g is zero:

Ferg= {© c SO(3)] 9(6) = 0}.

A Levei ACF is the space of rotations where ¢ is applicable and ¢ iv some couvstant

148

ATHL"T 1 MEAYE - "MIV A a’ AT s s sy =s =

TN O TR AT MY TS S T TSR T Y

S a A el

)

S 2R AL e SN

Ao gl

value £

{©€50(3) | ¢(6) = ¢}

Recall the geometric interpretation for ACFs. Consider a type (b) constraint (see
figure 3.5). A path p : I' — SO(3) along a level ACF for the constraint (g, f3)
would, if the midpoints of the edges were affixed, prescrve a;(8) at a constant

height above the plane of f3.

3.12. A Note sn the Computation and Algebra of Applicability Constraints

The implemented planning system contains an algebra system (described
in chapter 4), which performs the computations reclevant to the applicability
constraints. We would like to make the computation as simple as possible, for

otherwise an implementation might be infcasible.

AAY .~ | B .) Sy
i (Y

PR VR R, [o S f U S-SR
¥¥T Q1Y T 5n0Wn il : 1

computations foi bhe applicability
constraints:

(i) Type (a) ACFs (3.3) which determine the applicability of type {a) C-functions.
(i) Type (b) ACFs (3.4) which determine the applicability of type (b) C-functions.

(ii1) [Basic] Type (c) ACFs (3.6) and (3.7), which provide a necessary but not
sullicieat condition for the appiicability of type (¢) C-functions.

(iv) DACs (3.8a-c) which provide necessary and sufficient conditions for type (c)
applicability.
However, it is not hard to show that the real-valued functions for (iii) and
(iv) are composed of simple type (a) and (b) ACFs. We will demonstrate this as
follows. Let A be the space of normals to planss in R, Note that N? is of course
isomorphic o ®%. We vow define the functions Fiy and F; to model the computation
of type (a) and (b) ACFs. These functions will be composed to compute the more

cortplex type (¢) ACPFs and DACs. Let Fy and Fjy be real-valued functions

Fa, Frp : R X B x N3 R

where

Palbu, by, N, ©) = b, - N(©) = bj - N(O)

119

}

and
F];(a", ay, N, 6) == a,‘(e) -N — a;(e) - N,

Clearly, Fx and Fj can be used to compute ACFs for all type (a) and (b)

constramnts. They can also be used to compute type (¢} ACFs as follows:

Fa(bj, mid(ey), N;,©), ifi=1,2;

d;(©) =
(©) {FB(ag, mid(e,), Ny, ©), if 2 = 3,4.

Np(©) is already computed as the real-space normal for a iype (c) C-function.
With Np(©) in hand, DACs can be computed using Iy and F4. This is because
DACs are essentially constraints on tangent vectors to the faces of the polyhedra
in question, and the ta'ngent space of ®? is isomorphic to its normal space. We
will show how to compute DACs using type (a) and (b) ACFs. Our trick for
rotating a tangent vector (v, p) simply involves rotating the line segment (p,v + p)

to (p(©), [v + p)(6)). For exaniple,
T\(©) - Np() = F), (mid(ca(@o)) + T(©0), mid{ea(O0)), N1-(O), 9)

Here ©¢ denotes some fixed orientation. Typically Qg is the identity clement for
the rotation group, i.e., it denotes no rotation at all, and will be the orientation
in which the polyhedra aie given, and in which the tangent pairs arc initially

computed. In particular, [T;(©0)](©) == T{O).

Our reduction of all applicability computation to a few siniple functions is
partially motivated by asthetics, and partially by the design of an algebra system

for our planner. The reduction will admit a simpler and more elegant design.
3.12.1i. A Conjecture

Let us make ore final comment, on type (¢} ACI's. For each type (c) C-function,
there are two type (¢} ACFs. One type (¢) ACF (3.6) is the product of two
type (a) ACFs; and the other (3.7) is the product of two type (b) ACFs. These
products are constrained to Le negative. In practice, we would probably wish only

to compute the value of each subresult (d;) for cach type (a) and (b) ACF, and then

compute a logical conjunction to determine when one is negative and the other

positive, instead of cornputing their product.? We coajecturc that the composition
of type (c) C-functions and ACFs reflects the underlying algebraic structure of these
constraints: observe that each type (c) face f,; of the Minkowski solid B & A(8)

is the composition (by direct sum) of an edge on A and an edge on B:3

fa,b = ea(e) @ €. (3.14)

Similarly, the (real-space) normal Ny to such a face is the composition (by vector

cross-nroduct) of an edge on A and and edge on B:
N p = €4(©) X e, (3.15)

In this chapter we have derived a new symmetry, a symmetry for the ACFs of type .
(c) constraints. In particular, it is now clear that type (c) ACFs are the coemposition

(by scalar multiplication) of a pair of type (a) or (b) ACFs.

ZThis approach is taken for the implemented planaer.
3quations (3.14) and (3.15) are from Lozano-Pérez (1983).

151

4.
Mathematical Tools for Motion Planning
in a Six Dimensional ConfigurationSpace

4.1. Introduction

Qur carlier presentation of representational issues and applicability econstraints
in R X SO(3) addressed basic theoretical issurs for the motion planning problem.
In this chapter we discuss specific issues which were crivical Tor the itaplenentation
of the planuing system described in cnaptes 2. The fundamental issue is the
intersection problem in high-dimensional conliguration speces:

(i) llow do we interscct high-dimensional leve! C-Manitold: to constr.:t aa
intersection manifold?

(i) How do we intersect a trajectory in conligusation space witl C-Space constiints?

Examples and applications of these results mas be found in chapters 1 and 2.

We will proceed as follows. First, as a “siruple” example, we vill wolve these
problems for the configuration space R? X S'. For this space the algebra is not
unrcasonable and illustrates some of the complexities of planning for the 6 POF
case. However, in ¥ X SO(3), the equations for some constraints (notably, type (c)
constraints) can fil! several pages. For this reason, I first computed the general form
of the intersections for an arbitrary constraint, and then solved all intersections
using Macsyma (LCS (1983)). The results were then optimized and compiled into

Lisp. For all practical purposcs these results are in machine readable form orly. For

example, using Buler Angles parametcrized by © = (9,0, ¢) for three-dimensional
rotations,’ a tvpe {b} coustraiat in Wacsyma becomes:
((~XC (A1) *XC (NGI) »COS (PALY -XC (AL) *YC(NGJ) «SIN(PHI)) *»COS (THETA)
+XC(AL) «2ZC (NG 1 SIH (TALTA) YT (AL) *YC (NGJ) +COS (PHT)
*YC(AT) *XC(NGJ) »SIH (PHL))
*C0S (PSI)
+((YC{AI) «XC(NGCI) +C02 (PHT) +YC{AL) *YC(NGJ) #*SIN(PEI)) *C0OS (THETA)
. =¥ (ALY ZC(NGT) S (TRETA) -XC (AI) *YC(NGJ) »COS (PHI)
+XC (ALY *XC (LY. »Si (PHI))
~ #SIN(PSI) - 2C{AT) s ZC (NCJI) «COS (THETA)
+=ZC (AL} #XC(NGJT) #COS (PHI) -ZC (AI) *YC(NGJI) +SIN (PHI)) *SIN(THETA)
~¥2NHGY) CGS{PHI)+XC(NGJ) +SIN(PRI) +ZC(NGJ) +Z+YC (NGJI) *Y+XC{NGJ) »X
. =2C(AJ3~ZC(NGI) -YC(BJ) *YC(NGJT) -XC (BJ) *XC(NGJ) .

“his is the simplest of the constraints; a type (c) constraint is over 10 times as long.
" Fa R X SO(3) our approach has been to (1) derive these constraints (and the
ACFs) from some arbitrary representation for rotations, (2) reduce each constraint
to a series of simpler, canonical forms which are linear, bilinear, or quadratic in the
terms of interest, and (3) develop simple mathematical procedures for operating on

vhe canonicai forms,

For example, to construct an intersection manifold for n constraints, we

essentially need to solve a set of n simultaneous equations, each of the form
f(X)=0. (X € R x SO(3))

We proceed as follows. Let D = {z,y,2,1,0,¢} be the set of all the degrees
of freadom. I'irst we sclect /2, a subset of 6 —n clements of). £ will paramcterize
the interscction manifold. The variables in P will be the free variables which the
planner can choose; the variables D — P will vary dependently with P so as to stay
on the it tersection manifold. Mechanically, this entails (1) solving Lhe n constraints
simultancously eliminating all but one variable in I - P, ana (%) expressing all

dependent degrees of freedom D — P in terms of the free variables P

The canonical forms are expressions for C-functions which make explicit the
coeflicients of the dependent variables (D — P) themselves, and of the sines and

cosines of these variables. 13 complicated cquations describe the canonical forms

"Buler angles are iinplemented as rotation matrices in the planner. See Symon (1971).

of a C-function, and 9 equations are needed for a type (a) or (b) ACK.2 Complete
Macsyma listings of these procedures are provided in an appendix. Before wading
inte these waters, however, let us turn our attention to the configuration space
R x St

We will adhere to the definitions and conventions established in chapter 3.

4.2. The Intersection Problem in K2 X S!

The find-space and 6nd-path problems in ®% X S! are of considerable intrinsic
interest. We have suggested that good algorithms for the two dimensional Movers’
problem could be developed by planning along the intersections of constraints. Soine
of the necessary thcoretical tools for this approach are presented in this section.
These results illustrate the principles nccessary for planning along intersection
manifolds in N3 X SO(3]. The derivations are simpler because (1) the constraints
are simpler and (2) the applicability regions are merely sectors on the unit circle. A
complete, general path planner has been implemented for this problem (see Brooks
and lLozano-Peréz (1983)). This scction serves both as a pedagogic exarnpie and as

a prescntation of a new approach to the planning problem in %2 X S!.

To plan paths along the interscctions of constraints, we must be able to construct
the intersection manifold of some set of constraints. To preserve tradition (see
Brooks and Lozano-Peréz (1983), for example), we will call any level-G C-manifold a
C-surfoce. A C-surface is the space of configurations where a C-functlion is applicable
ard zero-valued. C-surfaces arce interesting because they bound C-Space obstacles.
We will derive the forir of the intersection of any two C-surfaces in 12 X S'. Each
C-surfuce is a 2-dimensional manifold in 8% X S!, and their interscction manifold is
acurve p in M2 X S'. We derive a curve p which is parametric in 0. Since there are

2 types of C-surfaces (type (a) and (b)), there are 3 types of intersection manifolds.
4.2.1. The Intersection of Twe C-Surtaces in 72 x 9!

We deseribe a technique for finding the intersection of two C-surfaces for the

Lvo dimensional mover’. probiem with rotatinns, Througheut this discussion of

“We roe now why owee desicabie (o expross ol ACES and DACs a3 compositions of type (a)
ana (b} Alhva

Neeall that (=.y,0) is a typieai peion iu the O-Space B X 51

N? x S, we will employ the abbreviations C = ces@ and S = sin 0. The surfaces

are embedded in a 4-dimensional manifold and expressed as functions on (z,y,C, S)

with the added constraint that C? + 5% = 1. A system of cquations for two surfaces

can then be selved for z and y in terms of C and S.

Two type (a) constraint surfzces are functions of the form f(z,y,0) = 0, for

example:

sin(0 + M)y + cos(0 + X;)z — |[bji| cos(0 + N; — ;) - || a:]] cos{N; — #74) (a1)

sin(6 -+ \)y + cos(0 4- \))z - ‘,|b]’|| cos(f + N/ — '71') — |laf]} cos{r! — n}) (a2)

Similarly, two type (b) surfaces are:

sin{¢;)y + cos(8;)z — llail| cos(6 - é; + mi) — lbs| cos(¢; —) (1)

sin{#1)y + cos(#))z — [|all| cos(0 — % + nl) — bl cos(@h — 11 (b2

Refer to figure (4.1). Ilere the a;'s are vertices of the “negated” moving polygon
{GA in Lozano-Pérez [1981, 1983}, in its local coordinaie system. 7; is the angle
the line frem the origin of that coordinate system to the point a; makes with the
covrdinate system’s z axis, and)\; is the angle made by the normal to the segment
from ¢, to a; ;. Similarly the b;’s arc the vertices of a convex obstacle polyzon, v;
the oricntation of the line from the origin to b;, and ¢; the orientation of the normal
to the segment from b; to bjy ;. The parameter 0, a parameter of the conliguration

space, mcasures the angle between the z—-axces of the object and obstacle coordinate

systeins.

Type A constraints can be thought of as being generated by a face (edge) of
the moving object A coming into contact with a vertex of an obstacle B, and a

type B constraint as a vertex of A coming into contact with a face (edge) of 3.

[7}
. .. gunercling line.
: : .
Beee- ON
]
lh.!!em(x.--\)\ :. ________
YR TTTANY T -
L]
L
*
Ih,l.cu('u \
[) (B
e ™ ™
l.
type A
l‘\
&
[N Y
- _genersting
\\
-
- e = nofe \‘
b, /u.,[iccl(u»\-o,)
1B licostn-2)

=Ry
type B

Figure 8. The two types of IUYT;CH can be defined by bring the reference point of the

pegative of moving object A into contact with s vertex and ar adge of tixed obstacle B.
Both are defned over a range of crientations 4.

Figure 4.1.

An illustration of the terms in equations (al) and (bi). Reprinted with periission
from Brooks and Lozano-Peréz {1983).

Each constraint is valid only over a fixed range of 0. For type A surfaces the range

is given by 0 € [¢;_1 —\,, #;—X\;] and for type f3 surfaces by 0 € [¢;— X, d; —\;]

By applying trigonometric reductions we can express thesc constraints as

follows {(only (a1) and (b1) are shown):

cos(X;)Sy + Csin(X)y — sin();)Sz + C cos(\;)z
+ sin(\; —)[8;115 — llaill cos(hi —)
— Ccos(hi — 7;)]ib;]] (al)

sin(;)y + cos(¢;)z — [|ail| sin(¢; — :)S
— Cllay|| cos(¢; — n:) — |1b;l cos(¢; — 5] (61)

Where
C =cosf, S ==sinb.

Now, we can consider a pair of thesc cquations as a system ia four variables,
(z,y,C, S), and proceed to solve (al) and (b2), {b1) and (b2), and (al) and (b1) for
z and y. For example, the intersection of two type (a) surfaces, (al) and (a2) is a

curve

p:ra[raz = R X 8

where 74N 7.2 C S! denotes the intersected applicability constraints for
(a1) and (a2). Although the solutions are in the variables C' and S, we can use
C == cos0 = cosr and S = sinf = sinr to gencrate the curve of intersection
in M2 x S!. Because of their excessive length, these equations may be found in

appendix L

4.2.2. Intersecting Trajectories with C-surfaces

A General Discussion for #2 X S and 7 X SO(3)

In order to motivate a discussion of the intersection problem for trajectorics

and C-surfaces, we now introduce the problem in a context which will be expanded

1 Source: The Lt three paragraphs are excerpted from Brooks and Lozano-1"éecz, [1983].
I I

Ay talg s
R

e RACATHCL TR G IR Ch i o R LAl St Sy ciiS e R A W T N
.:" h&':m:%&::‘%\n . o.:-\h?":.’!' T f!t'?'-s& y n':.-. o -:g:‘!::?‘Ja:!' vty ‘"t\-""r" o "‘ SR

upon in chapter 5. The goal of this discussion is to illustrate how the intersection

rcsults are used in the planner described in chapter 2.

In principle it is possible to intersect arbitrary trajectories with C-surfaces—
such trajectories could translate and rotate simultancously. Once an intersection
is found, we must then determine whether (1) the C-surface is applicable, and (2)
whether it lics on the boundary of a C-Space obstacle. The question of applicability
may be resolved a priori by maintaining and updating an accurate set of applicable
constraints as the planner moves through rotation space. This set is called the
applicability set. As the planner moves from © to ©', the updating algorithm
must detect which constraints have ezpired (ceased to be applicable) and which
new constraints have been activated (become applicable). The expired constraints
arc deleted from the applicability set, and the new constraints are added. In this
manner Lhe trajectory will be intersected only with the applicable constraints.
Another approach involves intersecting the trajectory with all C-surfaces, and then
finding the first applicable intcrsection on the boundary of a C-Space obstacle.
The first strategy is more general in that it decomposes the image of the trajectory
into equivalence classes where the applicability set is invariant, Hence it can in
principle be used to map out these cquivalence classes on SO(3). However, for
most eavironments the latter strategy runs faster, although both techniques can
be shown to have the same asymptotic complexity. Both algorithms have been

implemented® and tested, and arc presented later in chapter 5.

There are also two ways to determine if an intersection lics on the boandary
of a C-Space obstacle. Let X be the interseclion point of a trajectory with an
. Then X lies on the boundary of a C-Space obstacle bounded
by f if cither of the following holds:

(i) All applicable C-functions in f’s family are negative or zcro-valued at X6

(i1) If the projection of X into real-space lies within the displaced face of the

Minkowski solid corresponding to the generators for f.

Correctness Argument: Lei us brielly discuss why (i) and (ii) are equivalent. The
correctuess of {i) is obvious, since the C-Space obstacle is constructed as the finite
intersection of half hyperspaces, cach of which is defined by a real-valued function
on C-Space. Let § denote the face of the Minkowski solid, and z the projection of
5For B x SO(3) but not for B x S*.

6The family of a C-Tunction s delined in 3.2

the intersection point into real-spacs (i.c.,, X == (z,6)). We will demonstrate that
(1) & (ii).

(=) Suppose (i), but not (ii). We demonstrate a contradiction. = must lie on
the plane of §, even though z & §, since that is how the C-functions are defined
(X could not be an intersection point, otherwise). Recall that the normals of the
faces (and planes) bounding the Minkowski solid are defined to be outward-directed
from the interior. Since the Minkowski solid is convex, the plane of § bounds a
half-space entircly containing the solid. I z is not within §, then it must be outside
the plane of some other face, §', which shares an edge with §. But in this case,

the C-function corresponding to §' will be positive-valued: a contradiction.
g

(¢=) The Minkowski solid is convex. If £ € §, then it is behind (or on) the
plane of every other faces of the solid. The C-functions are defined in terms of the

distance of z irom these planes, which must be negative (or zero). 8

One further note: supposc that all intersections with C-surfaces—including
non-applicable C-surfaces-—have been sorted aleng the image of the trajectory in
C-Space. Then if X is the first intersection for which (ii) holds, then f is applicable
and X lies on the boundary of the C-Space obstacle. Again, both approaches have

been implemented, and the results are discussed later.
Intersecting Trajectorics with C-surfaces in %2 X S!

We will now present methods for intersecting pure translational and pure
rotational trajectories with C-surfaces in %2 X S!. Note that as long as every path
of interest lies entirely within open scts of 2 X S!, then for every such path there
exists a homotopically equivalent path composed of “staggered” pure translations
and pure rotations. We assume such paths can be expressed as (piccewise) lincar
functions of some paramecter. Intersecting such a path with a C-surface entlails

finding the zeroes of the associated C-function (with respect to the parameter).

Pure Translational Paths. Note that (al) and (b1) are linear in z and y. At a fixed
oricntation their projection into real space is & line. A pure translational path is
also a line. Clearly then, intersection of a pure translational path with a C-surface

1s trivial,

160

Pure Rotational Paths. A pure rotational path is a lincar function from I! to S'.
Intersecting such a path with a C-surface involves finding the zeros (with respect
to 0) of the C-function at a constant translation. Observe that C-surfaces (al) and

(b1) are lincar in C and S, that is, they can he expressed as

E\C + EzS +E3 =40 (4.1)

where the terms F; (for 7 = 1,2,3) vary only with z and y. The zeros of (4.1) are
not hard to find. First we note that (4.1) can be cxpressed as a pure quadratic in
C (or S), and that solving a quadratic for its zeros is easy. (We must, of course,
check for the first applicable zero which is on the boundary cf a C-Space obstacle).
This method is not the best because of susceptibility to numerical problems and
singularities. appily, such equations arise frequently in robot kinematics; Paul
(1981) describes a stable, singularity-free calculation for the zeros of exactly this

forin of trigonometric equation.
Practical Note

The recader will notice that motion sliding along an intersection manifold
in ®2 x S' will not in general be a pure translation or rotation. We have not
derived the results for intersecting arbitrary trajectories with C-surfaces in 22 X S,
although in principle it is possible to do so. Notc that any such sliding motion
can be approximated as closely as desired by a sequence of pure translations and
rotations, and furthermore, any such “approximating” planner will be complete (in

the sense discussed above) il the “sliding” planner is complete.

Furthermore, our purpose here is a theorctical analysis in low dimensions
which still iluminates some of the staggering difficultics in R* X SO(3). As it turas
out, with the additional degrees of freedom in R X SO(3), this turns out to be

considerably less of a restriction.

4.3. Related Problerns in 1% x St e,

'. H
There are a number of interesting related problems in 2 X S!. The first &Qﬁ
addresses techniques for “sliding” along one geometric constraint (C-surface).

Sliding is a uscful way to circumnavigate obstacles; it can also be used to slide to an

. N

WA, W

.‘.\"u A

161 M

o=
L\mxun,‘nn\m\n.\nun“n.~n.\m|-|.-u\~u-|-\n.\~‘—u-n MR AL A ML ML ML LM Ae s Mm i ml a RLi R e TR M o w tmb e me m rm t e e em e = = L‘\. (4

intersection manifoid. The second resuit is of use in the find-space and coordinated
motion probleins, aad involves characterizing the minimum clearance to a C-surface
in ®% X §'. Again, these resnlis are presented not only for their intrinsic interest,
but also as an cxposition of sowne of the algebraic techuiques required and as ap

illustration of the complications arising in high-dimensional coifigurition spaces.
4.3.1. Techniques for Moving Along C-Surfaces in R4 x §!

I this section we present techniques for moving along a C-Surface. We could
imagine using these methoeds to move to the nearest “edge” (C-Surface intersection),
for example. A level C-Surfaceis defined via a fusiction f{z,y,6) = k for k <onstant.
J is exactly of fonia (a1) or (b1) (above), and the level surface in R? X S is all
points

L={XeRXr; | j{X)==k},

where ry C S' is the @ applicability range for §.
Define a hyperplane in 82 X S! as the set
P={XeRXS|X H=—h)}
where H == (hy, hy, h3).
We intersect the level surface L with the hyperpiane 7' to obtain an intersection

curve p: J' — R? X S'. The cquation for this curve for both type (a) and (b)

C-surfaces may be found in appendix L
4.3.2, Characterizing Clearance to a C-Sarface

It would be very useful Lo characterize the mintinum clearance to a C-surface.
The resuft ceuld be applied in the coordinated motion problem to determine where
two mobie objeets could possibly interact. In the find-sparce pooblem, we could use
clearance information to maxiwize the clearance to a constraint while placing one

object, in order to lrave room for another. 'We would like to answer the quostion:
N . R a9 . . .
s [for g point by C R, af what orientation 15 by, closest ta a C-surface, and
what is rinimum direcicd cdearance veclor al that orientilion?

Using Lagrange mwltplicrs, we can mwinimize a funcrion f{r,y, 7} subject to a

censtraint g{a, 1, @) = 0 by conctiucting the auxiliary fuction

82

H(z,y,0,8) = [(z,4,0) — £y(z,y,0)

and simulianeously solving the partial derivatives of 1. In our case, g will deline
a C-surface, and f will be a distance function. Now, the rotational dimensions
cannot be treated uniformly in establishing a metric, so we will define distance in
Euclidean space. Minimizing the square of the translational distance suffices for

our purposes. Hence,

f(z,9,0) = (- b.)" + (v — by)".

Differentiating /I gives us a system of four equitions. Solving these equations for z,
v, 0, and £ is not tiivial. We provide the solutions and their derivation in appendix

I. (Solutions are given for both tyne (a) ang type (b) C-surfaces).
4.4. The Intersection Problem jn ® X SC(3)

In ihis section we axtend the previous examples of intersection problems to
ithe 6-dimensional C-space M3 v A‘:-'C)(B). At this point we must cowmmit ourselves
to a particular representaiion for rotations. The implemented planner uses a
rotation matrix specified by Buler Angles. Implementing a different representation
for rotations (such as splierical angles, quatcrnions, or joint angles for a Cartesian
Manipulator) would merely require replacing the Macsyma rotation abstraction
ROTATE-VECTOR with the appropriate new function (nd recompiling the algebra

system). The Fuler Angles are

6 =(v,0,4)

The intersection problems in W% X SO(3) are as follows. With each problem
we give the motivation for attacking it.
(i) Intersecting (level) C-surfaces. (Necessary Lo construct the intersection manifold).

(ii) Intersecting Level ACFs. (Interesting theoratical question: relates to planning on
dilferent kinds of ntersection wanifolds, and exploiting cohercnce in C-Space
constraints).

(1) Intercecting C-Surfaces with Level ACVs, (Same as (ii)).

(iv) Intcrsecting Trajectories with C-surfaces. (Indicates that we oy have hit a
C-Spacc obstacle).

i63

{v) Intersecting Trajectories with ACFs. (Indicates that a constraint has expired
" (ceased to be applicable)).

Note that we never have to intersect a trajectory with a DAC, since any path
straying out of a type (c) constraint’s applicability region must first violate an ACF
boundary (sce Theorem I11.5). Since all ACFs can be composcd out of type (a) and
(b) ACFs, we nced only decal with three distinct kinds of functions on R* x SO(3)
and two on SO(3). In the context of this section the term ACF is used to refer
only to the basic type (a) and (b) ACFs out of which all ACFs and DACs may be

composed.

Our approach is as follows: We express all C-functions and ACF's in certain
canonical forms. The Macsyma procedures to derive these forms are provided in an
appendix. We then develop certain operations which are defined on any function
expressed in these forms. Throughout this discussion of ®% X SO(3), we use the
notation C, == cosa and S, = sina where a € {,0,4 }. Most of the claims in
this section should be scif-evident when the rotation matrix R(©) for Euler Angles

is considered.

Clatm 4.1: All C-functions are affine in z, y, and 2. This is obvious, since R(8) is

a linear transformation. g

Claim {.2: While expressions for C-functions and ACF's can contain cross-terms of
the form C, 83, SaSy, or C,Cp, it should be clear that a % 8, that is, ¢ can

always be expressed as an afline function of S,.

To derive this, consider the delinition of a C-function (equation (4} in chapter

3) once more:

(=€) = (N(©),z) — (N(8),(ai(©) + b))

Only the term (N(8),a;(0)) cculd result in any troublesome terms. For a type (b)

constraint, N(0) is a fixed vector. For a type (a) constraint, N(©) is a rotated

normal of a face of A, and we have

DA
S, 8%
L)
:th."ll‘.f

¥

. Finally, for type (c) constraints, N () is the cross product of ¢,(0) and e;. This

results only in cross-terms of different angles:

(@:(8), ex(8) X e1) = (a:(6),{a:11(6) — a(8)) X &)
(0), a:41(6) X e — ai(©) X es)
(9)1 ai'}-l(e) X eb)

a;
a;
Chy A, 9) X aii'l(8)>°

= (
=
=(
=
A proof for the ACFs is very similar. g

4.4.1. Canonical I'orins for C-functions and ACI's

Dcfinition: The Linear Form for a C-function f : R X SO(3) —» R is an equivalent
expression

f(z,‘y,z,e) = x4+ Es;y + Eyz + Fy,
where E; : SO(3) — R (for 1 = 1,2,3,4).

b UYL I SR SR ¢ 4 SRRV SUTIUY o VIS [N St ARy 44 o e B ol Y 44 Y
ASCIUIILIVILG £1 LTIJOTOIMELTIC WURATALC L'07m [1w j (il gy

an equivalent expression
f{z,y,2,94,0,¢) = Fising + Facos ¢ + F,

where

Fi: R X (v,0) - R. (t=1,2,3)

Definition: A Trigonometric Quadratic Form (TQF, (in ¢) for an ACF g : SO(2) —

R is an cquivalent expression
g(¥,0,6) = G sin ¢ + Gacos ¢ + Gy,

whero

G, ("10:0) - R \1 == 1, 2, 3)

The TQUs are defined here in ¢ —of course we must also deline the TQFEs in 1)
and in 0 in the natural way. ¢ will be our typical example angle i this discussion,

however.

Before we proceed let us provide some intuition for these definitions. Imagine
deriving a lincar form for a C-function, and setting the expression equal to zero.
The result is just an expression whose ceeflicients make explicit how the plane

equation of the face of the Minkowski solid changes with rotation.

A TQT (in ¢) is just a way of expressing C-functions and ACFs in terms of
the coeflicicnts of sin ¢ and cos ¢. Lincar forms and TQUIs will be uscful canonical
forms for the intersection problem in R3 X SO(3). It is important to realize that the

cocflicients E;, F;, and G; are actually functions on the other degrees of frecdom.
We see immediately from claims (4.1) and (4.2) that:

Claim 4.3: Every C-function can be expressed as a linear ferm and as a TQF in
¥, 0, and @; similarly, every ACI" can bc expressed as a TQF in v, 0, and ¢.

4.4.2. Intersecting C-surfaces in R X SO(3)

When intersecting C-surfaces in 2 % 8!, we essentially climinated variables in
| a system of equations. This corresponds exactly to “spending” degrees of freedom
\ to comply to two constraints. In ®? X S', there were few choices for which
| variables to climinate. However, in R X SO(3), we have many more degrees of
| freedom, and hence there are more choices for how to solve the intersection of
' a set of constraints. For example, to construct the intersection manifold of three
| constraints, we could spend all the translational degrees of freedom, which would
result in parameterizing the intersection manifold by (¢, 0, ¢). Alternatively, we
could in principle eliminate the rotational degrees of freedom and parametcrize
the intersection manifold by (z,y,z). In the former case, we leave (¢,0,¢) as
independent degrees of freedom: parameterizing the intersection manifold simply
involves solving the 3 constraints simultancously for z, y, and 2 in terms of (v, 6, ¢).

To move ajony their intersection, we are free to plan any values for (¥,0, ¢), and

& TPV E T vy Bl WA =AY wmalmeas T el THEE W Sm— e e o 7 e

the parameters fur the translational degrees of frecdom will vary so as to comply
to the simultancous set of constraints. Obviously the choice of which degrees of
freedom sheuld parameterize an intersection manifold is important; lincar forms

and TQWVs give us a general way of atiacking it. This approach is best illustrated

o0 S’f@gg

LAY,
{ A ﬁ
M Lm0 L LM e LA LT S) A U AUAURCUA A LA DA S\ LA WL T AU AC AU YL I A AU U U LA LE A LS L L "M"\l'\('.ﬁ'.:}f%“ :

through the following examples:

W ST WL A e T e e T MERRATTS el T2 et T

Ezample (i). A C-surface in linear form is an expression for a C-funciion in linear

form set equal to zero. Two C-surfaces expressed in lincar form may be intersected
to yield a 4-dimensional intersection manifold parameterized’ by (z,1,0, ¢). This

amounts o simultaneously solving the equations

J(2,9,2,8) =Eiz+ E;y+ Ezg2+ Ey =0
9(z,y,2,8) =E|z+ Ely+ Ejz+ E{ =0

by first climinating z and then solving for y. This yields expressions for z and
y in terms of (z,v,0,¢); we say that (2,4,0,¢) form a 4-parameter family for
the intersection manifold, and that z and y comply to the C-suifaces f and g as
(2,7,0, $) are varied.

This intersection has the following geometric interpretation. Imagine holding
orientation constant at ©;. Then E; and E/ are all constant also. Intersecting [
and g at a constant orientation is equivalent to intersecting two planes in R°. The
intersection is a line, and the position along the line may be parameterized by
the one remaining translational degree of freedom, z. The planes intersected are
exactly the planes of the faces of the Minkowski solid for f and ¢ at orientavion
8.

Ezample (ii)). The intersection manifold f(X) = ¢(X) = 0 from example (i) may
be intersected with another C-surface, h(X) = 0, expressed in lincar form. Suppose
z is climinated. Then the intersection manifold for f, g, and h is parameterizcd by
(3,9, ¢). The translational degrees of [reedom z, y, and 2z, will be expressed in terims
of the rotational degrees of freedomn, and will slide along the intersection manifold
as rotations are chosen. The new intersection manifold f(X) = g(X)=IX)=10
is a 3-dimensional sub-manifold of :* X SO(3). This intersection has the following
geometric significance. Imagine helding orientation fixed at ©; once mors. The
intersection at a fixed orientation of f, ¢, and A is the intersection of three planea
in ®*. This ‘ntersection (if it exists) is a typically a point. If ©) is allowed ‘o vary,
the intersection point moves. The coordinates of the intersection point are the z,
y, and z degrees of Irecedom as they comply to the intersection manifold.

T Assurne that the constraints are not parallel, and that this is possible, ebe.

1687

LA A G I S e o I R T o DTN T L A AU ATA LA LA A T S U G A AR AR A LA AT A W A Ol v S LNy Y

T T ——— e

Examples (3} and (1} show how to spead transiational degrees of freedom to
intersect C-surfaces. In (3}, we saw that it is possibie t¢ plan motion along the
the 4-dimensional ntersection manifoid with one translavioual and three rotational
degrees of freedom. (i) can be used 1o plan & pure translational path complying
{0 two C-surfaces. The lree translational parameter may essentially be chosen to
maximize progress in o search algorithm. Thic is precisely how cre “local expert”

in the implemented planner works.

One last note on linecar forms: the dizcussion and exampiss above can be casily
generalized to arbitrary level C-surfaces {(instead of C-surfaces with level 0) by
increasing or decreasing By (the “consiaat” term in the linear form) by a constant
cqual to the level,

Intergecting Two TQIs

Consider a TQF g (in ¢) for either a U-functiva or av AC(,? and suppose
further that the TQF has been set equal to zero so that it is actually a TQF zurface,

ker g, by which we wean a TG for a C-surface oy ACF boundary.,
Iysing 4 Fycos ¢ + F3 =
Such a TQF can be expressed as:

"

(F% + F3) cos” ¢ + 2FaFy cos ¢ + I3 — F; == 0.

-
a
™)

—

The new expression is quadratic in cos@. (This cxplains the name TQF). The
procedure for intersecting two quadratics is well known.® Such a procedure can
Le used to intersect two quadratics of forn (4.2) (i.c.,, with cos¢ treated as the
quadratic variable). Thus we can obviously intersect any two TG surfaces. This
means that the procedure for intersecting two quadratics can be applied to TQi% of
C-surfaces and of ACKF boundaries, This immediately yiclds an effective procedure

*Depending on whether the TQF is a C-function or ACE, the functicns F; will have dilferent
domains, but thin will not maller for our discussion.

"ior example, see Winston and Horn (1681), (p. 175).

168

L NN T R N TN N ST A S R SN TN A N

for constructing the intersection manifold of two C-surfaces, two ACF boundaries,
or a C-surface and an ACF bouundary while spending only rotational degrees of
freedom. v
:.{,;l’
. § Q.-
4.4.3. Intersecting Trajectories with C-Surfaces and ACF Boundaries in fé::;-ﬂ
‘t "x
N3 X SO(3) N
In this section we extend the method of (4.2.2) for intersectling arbitrary linear B
pure translational and pure rotational trajectories with C-surfaces in ®* X SO(3). ,ﬁi::‘:g
n"- 4 ‘!:
R
Pure Translational Paths. A pure translational path can not stray out of an ::‘t 4
applicability region. It is not hard to intersect a linear pure translational path with '.": =
~ d ¥
a C-surface. Such a path can be represented as a line in 5. At the fixed orientation '&{:&g
i
of the path, any C-surface can be represented as a plane in ®*. Hence the problem | .::':; \
by
of intersecting a C-surface with a (linear) pure translational path is simply the a “"
problemn of intersecting a line with a plane. The linear form of any C-surface :
directly provides the coeflicients of this plane for any (applicable) orientation.
Note that in intersecting a pure translational trajectory from some configuration %
1
X € F with a set of applicable C-surfaces, we need only consider C-functions which o). {
3y t
are positive-valued at X. Pl 4
b
. [
Pure Rotational Paths. We restrict our attention to linear, pure rotations in ;[é"f
one rotational direction (i.e., ia 3, ;i;a, rl;&), for example, '.::. R
0
$(1) = ko + kit (tel) g
0
My
(for some constants kg and k). To intersect such a path with a C-surface (or ACF
! boundary), we simply find the zeros of the appropriate TQI". For this example, we
| would use the TQF (in @) for the C-surface:
Fysing + Fycos ¢ + F3 = 0. (4.3)
With inotion strictly in ¢, the functions F; will be constant, and may be regarded
simply as the coeflicients of a quadratic form. (1.3) is easily solved for the values of)
¢ which are its roots (sce scction 4.2.2). Now, depending on the solution technique,
169 TR
:;:::Zj;'
"‘.” "'v r ”l" '\":l"""f '.'.‘,'f."(' -"'-‘-"..".. , e '.-;’ ‘-{A;“:l;\“‘. 'An".alfﬁ"’ -~ ‘l’;‘*"-;'ﬂ,-'v.h’r .." "P(-l'{'Pr\{"{."(.',&:\r.'.'“- "t ..»_.'_ N \-R'-"-'._\': 'pf_

(4.3) may yield several roots. The correct root may be chosen as follows: for a
C-surface, we choose the first root where the C-surface is applicable. For an ACF
boundary, we choosc the first root where the associated C-surface is applicable.

This last step requires examining the other ACFs for the C-surface.
Completeness and Complexity for Rotational Trajectories

We have seen that a continuous path through rotation space can be approximated
as closely as desired by a scrics of linear motions along the rotational axes. We now
show that the number of path segments required grows linearly as the resolution

of the approximation becomes finer.

Definition: Let V be a vector space, and P and P’ be trajectories in V. We say

that P’ approzimates P at resoluiion 7 if for all p’ € P/, the perpendicular distance

1
>

of p’ to P is less than

Proposition 4.4: A linear trajectory in a vector space can be approximated by a
number of path segments along the axes, which increases linearly as the resolution
1_ - ‘

OECDIIiC3 nned,

Prooft Suppose V = R% and P is a linear trajectory from u to v. Imagine
approximating P by linear motions along the Z, §, and 2 axes. Segment P into k
subpaths. From u, asvtain each of the £ — 1 subgoals (and v) by 3 linear motions
(along %, §, and 2) from the previous subgoal. This yields a sequence P’ of 3k
motions which approximates P at resclution 7. We can bound rl_. fromn above as

follows:

1 1
— < —max(lv, — g, vy —uy|, |ve — uzl)
n k

To achieve a particular resolution 7, it is easy to chouse the smallest k satisfying

the reverse inequality. We sec immediately that k varies linearly with 7. &

Let the angle space @* be the domain of a chart for SO(3), as described in
chapter 2. Then the angle space trajectory

p(t) =0, +td

170

- A LI RN U . Nl - N A N W, W W o W W - ,‘\‘ \
g O R L Y, SN s T G T AR R A N D A A DA T v D S A M

for

A

o=a+b) +cd

specifies a well-delined trajectory R(p(t)) in SO(3).

Proposition 4.5. We can approximate p as closcly as desired by a sequence {g; } of
motions in @3 along the ¥, 0, and ¢ dircctions. Furthermore, the size of the set

{¢; } grows only linearly as the resolution 7 becomes finer.

Proof: Immediate, from proposition (4.4). &

4.5. The Algebra System

The treatment here of the implemented algebra system is mercifully brief.
Given the discussion, the details, at least in principle, should be easily imagined
by most readers. In computer algebra these problems are well understood, and the
systein does not make a significant. contribution. to that ficld. T would like to note,
however, that the algebra system is both massive and at the heart of the planning
system. It takes 12 hours for a dedicated VAX to optimize and compile the vector
form of the censtraints (in Macsyma) into the primitive functions of the Lisp algebra
system. On top of these primitives is built a more abstract system, which (for
example) can evaluate constraints, intersect constraints, intersect trajectories with
constraints, and find zeros of constraints. The intersection and evaluation system
has automatic singularity handling (for division by zero, imaginary roots, alignment,
etc). For example, to intersect two C-surfaces (a ld example (i), the planning system
will typically specify a list of preferences for the translational parameterization of
the intersection manifold. The system then attecmpts to construct an intersection
manifold with a high-ranked paramncterization, and on cncountering singularities

will back up and try again.

It should now be clear how the algebra system for the planner is designed.
For cach kind of constraint (C-function or ACK), the algebra system contains
procedures which compute the cocllicients of the linear form (for C-surfaces only),

and cocflicicnts of the TQFs. Iach of these procedures can be thought of as a

174

!\ RREAA
function of (1) the constraint, and (2) the parameters not explicit in the form (for SN

' example, the rotation parameters for the z coefficient of a linear form). On top
of this is built a level of abstraction, so that for example the operation “compute
the sin ¢ coclficient of the TQF (in ¢)” is defined on all constraints. Coeflicients
of all possible forms are described by a total of 12 coellicients for the lincar forms
of C-functions, 27 cocflicients for the TQFs of the C-functions, and 18 coeflicients
for the TQFs of the ACFs. (These functions correspond exactly to the functions
E;, F;, and G;, above). All of these functions are constructed and optimized by

Macsyma running under NIL (Burke (1983)), and then converted into Lisp.

We have also experimented with precompiling functions for all possible
intersection manifolds (up to some degrec).!0 For intersection manifolds of degree
2 or 3, this is not hard, and in fact we have already illustrated all the necessary
mathematics in this chapter. Intersection manifolds of higher degreces may be
constructed by solving for the submanifold representing the simultaneous satisfaction
of several constraints, for example, three coustiaints in lnear form together with
two TQI's such as (4.2). When higher decgrees are considered, this becomes

quitc complicated, espccially when we allow different parameterizations of the

intersection manifolds. Construction of intersection manifolds of higher degree may
be easicr when different representations for rotations—such as unit quaternions—are
employed. This appears a fruitful direction for future research. In practice, we view
it as preferable, wherever possible, to obtain the values of coefficients of a form

at a certain ccnfiguration, and then to plan locally while keeping these coellicients

fixed. Thus for example, we might compute the coeflicients of the lincar forms of
two C-surfaces at a given oricntation, and then intersect the resulting planes to
obtain a translational path along their intersection. The structure of the forms
makes this easy to do. For example, rotating the moving object (say, in (23) until
it hits a constraint is mathematically a complicated operation. All we necd do,
however, is find the coeflicients of the TQX in ¢, and supply them to a procedure
in the algebra sy stem which finds the zeros of TQF surfaces. (But see chapter 5 for

the details of the applicability sct computation).

10T degree of an intersection manifold is simply the number of constraints intersccted there.

172

4.6. Related Issues in R X SO(3)

4.6.1. Normals to C-surfaces

Let f be an applicable C-function and X a configuration on a level C-surface
for f. When an appropriate inner product is defined on the tangent space,!! the
normal to the C-surface at X is the gradient of the C-function f evaluated at f.
Normals to C-surfaces are of great importance for motion planning. The gradient
may be ccmputed as follows: first the cocflicients for the linear form of f (evaluated
at X) are obtained:

[(X)=Eiz+ Eyy + E3z + E4.

[

rotational direction, we find then cocflicicnts of the TQFs (evaluated at X)

Clearly, ‘-’;L = [, ‘%5 = k,, and %£ = 143, To obtain the partial derivatives in the

f(X) = Fisin¢ + Fycos¢ + F3

to obtain

b}
-—f. = F cos ¢ — Fi sin ¢.

¢

4.6.2. C-functions, Potential IPiclds, Penalty Functions, and Morse Theory:

A Conjecture

A popular approximate algorithm for collision avoidance places “potential
ficlds” around the obstacles (cither in real space or in some C-Space), and attempts
to navigate the reference point through a trough of least resistance. The obstacles
may be thought of as having a “charge” which repels the robot, and the goal has an
inversc charge which “attracts” it. The potential field method is closely related to

the so-called “Morse Theoretic” 12

approach to motion planning, and lends itself to
fast control-loop algorithms which can exercise real-time dynamic control of robot
arms with few degrees of freedom, in simple environments. As might be expected,
the method works best for robots that can be approximated by points or spheres. A

proper potential function increases as the robot approaches the obstacle, and goes

HSee see, 24.2 and Lrdmann (1984).
ZWhich takes its name from Morse Theory in differential topology.

to infinity at the obstacle boundary. Traditionally, the potential function is chosen
somewhat arbitrarily, with much emphasis on the closeness of the “fit” of the
potential surfaces about the real-space obstacles, and with understandable concern
for the computability of such functions by specific control hardware. With the
theoretical tools we have developed, it is now possible to give a potential function in
configuration space which is “cxact.” For a configuration X, let f be a C-function
represcenting the maximum, applicable, non-redundant constraint from one family.

For cach such f, we conjecture that a good potential field function would be:

(FxNF, it f(x) >0,

AX) = {oo, if £(X) = 0.

for some k > 2. Whether or not such penalty functions could be used in devising
a fast rcal-time control algorithm is, of course, another question. The suggestion is
primarily intended to show that there is a representation on which (in principle)

icss approximatie potentiial field methods might be based,

174

13 X N
A MO
whihyy
“’l’“‘!"!:‘. .

5
Moving Through Rotation Space

§5.1. Introduction

In this chapter we discuss somec of the computational issues involved in
planning paths -invoiviug three dimensional rotations. The primary issue is that
of keeping track of which constraints (C-functions) are applicable as orientation
changes. In principle it is possible to intersect paths with all ACF boundarics, and
thus to deiermine which applicability regions the path traverses and crosses. It is
also possible, in principle, to compute the applicability regions a priori, before the
planning begins.! In practice this is computationally infeasible. Even for simple
environments, there are typically thousands of constraints, each of which has at.
least 3 associated type (a) and (b) ACF's. We will investigate alternative strategies
which exploit coherence in how the sct of applicable functions changes as the
robot moves continuously through rotation space. In previous chapters (particularly

chapter 4) we showed how to intersect trajectories with C-surfaces and ACFs.

The applicability set for an orientation © is the set of all applicable constraints
(C-functions) there. Cleadly, there are regions on SO(3) for which the applicability
set is invariant; orientations in the interior of these regions correspond to orientations

where no edges or faces of the robot are aligned with the edges or faces of any

UThis approach is si iilar to the eritical region computations suggzested by Schwartz and Sharir

(1981).

SRE

Rl e

obstacle. For a fixed o «tation €, we compube the applicability sct by examining

the signs of the ACHF's for all C-Tunclions (s2e chapler 3). Howcever, this is clearly

net an operation we wish to repeat very often, and the applicability set calculation
prucedure should be memoized. (A memoized procedure records the answar for a
given input, so it will not have to be recomputed. Iustead, it car simply he looked up
in a table). As the robotl moves in rotation space, certain constyaints will expire as
the path moves out of their applicabiiity region, and other constraints wilt become
aetive as we move into their applicability region. This suggests that an increinental
update algorithm should be possible: we imagine detecting when constraints expire,
and when new constraints becotne active and constructing a Deletelist of cxpired
consiraints and an Addlist of new ccustraints. The applicability zet is then npdated

by means of the Deletelist and Addilist.

A W o (e o s R G TR P #TR I ST B R A L AT AR T A

5.2. ‘The Appl'cability Decomposition for SO(3)

Ld

In this chapier, we will first proseot o naiwe algo.ithm which does noet use
an apdate strategy. We then present a more sophisticated procedure, called the
G update algorithm, which is an incremental update strategy. We have performed
exveriments using both algorithms to implement the local operator Rotate, which
was discussed in chapter 2. Both algorithms have the sane asymptotic cemplexity.
Although we have applied both to the find-path problan, they are designed for
fundamentally different tasks. The naive algorithm is specialized for a particular
find-path operator, while the update algerithm is a genceral tool for commputing a

decomposition of C-Space for spatial planning.

The G update stiategy addresses the fundamental problem of applicability sct
compnutations in a continuous space. Without the § algorithn, there exists only
the “discrete” applicability set computation, which gives one point i SO3) can
determine the set of all applicable C-functions, With an incremental update strategy
we can map out regions on SO{3) for which the applicability sct is invariant. The
boundagies of these regions are ACF boundaries. Let Y(©O) br the applicability
set at © € 50(3), and = be a binary rclation on 5O(3) such that € = @7 if,
and only if 1(0) = U(O'). Clearly, == is an cquivalence relation on SCH3), and

S0O(3) is decomposed by =< into disjoint cquivalence classes where the appheahility

R R N Y I N O RS SR TN, T T e

set is invariani. We call this the applicabilily decompesition for SO(3). Computing
this decomposition is a fundamental step in reducing continuous spatial planning

problemns to discrete computational problems.

We will show how wo compute these decompositions for sections of §O(3) in
any of tha dhcctions § = {i{b,i@‘, :t&} In particular: The incremental update
strategy computes a projection of the applicability decomposiiion onto a subspace
of 50(3) whick is iomorphic te S'. In principle it is not hard to gencralive
these scctions to arbitrary rotational slices: algebreically this entails solving the
intersection of a TQF with an arbitrary pure ratation. As we have noticed, any
rotation of interest can be approximated as closcly as desired be a sequence of

rotations in §, with no loss of completencss (at a given resolution).

The naive algoritlim, on the other hand, is highly specialized to the particular
problem of rotating to a coasiraint. It does not address the more fundamental
int ions. We

belicve that the applicability decomposition is also importaut to planning problemas
other than find-path, particularly, for find-space, finc-motion, and planning with
uncertaiety. However, in practice the naive algorithm has proved faster for rotating
to 2 constraint than any incremental algorithm we have devised. It is gratifying 10
find that both strategies have the sarae asymptotic complexity; however, we have
no strong indication that the O(/N'log N') bound we demoastrate is optimal, and

P S e T T gy Y
AL dl&(ll ILLHENLD 1 dJ/ LS 17

8.3. A Maive Algorithm Withkout an Update Stratepy

We begin by presenting a naive algorithm for moving in rotation space which
does not emiploy an update strategy. We wish to desizn an ofective procedure which
s Lo be given astart configuration s, & poal divection a C | i, —--{.’), +€-7, —-ET, 1¢, ~¢ },
and a goal conbguration y. The goal conhipuration diffors frow s only in that the
goal ungle e the @ dircction will be g, instead of «,,. The procedure determines
i the robot can reach ¢ atoug the trajectory in &, or whether it will strike an
obstacie, i which case it woast return the Cosurlace hit and the intersection angle.

(Ve use antevseclton angle w mcan the value of o at the intersection point).

;..4
-.'b ﬂi

o
“y

£

-"n:f
I.' L
VAL
y

.I
e

"f‘.
R, ° b

L]

>
o

.;;.
-

=

2 A
e, O,
% L
b S %
3
{vvﬁvw LRI OF S A S Sk Sav Sav e S Ee N S S v 4 A
(a) (b) (c)
Figure 5.1.

Let C be the set of all C-surfaces. Calculate the intersection of the trajectory

plt) =3+ &

with every C-surface in € (whether applizable or not). Each such intersection can
be expressed ws a single angular value (i.e., the value of t or a for which p(¢)
lics on the C-surfacc) and hence as a single point on the uait circle. We can
order the intersection points by their intersection angle with a C-surface. Sort the
intersections around the circle. Then traverse the intersections en the circle in
direction & from s, and find the Girst intersection which is both appiicable and on
the boundary of a C-Space ohstacle. In 4.2.2 we gave an algorithm for how this

may be determined,

6.¢. Update Strategics: Example

We now proceed to describe how an update strategy works. If constraints could

178

Liirection: (RINUS TRETR)

\

EKsurioce Intersect i ons HCE Intersecy) ons

Figure 5.2. As the hammer rotales in the —8 dircction from (Yo, 242, é} !¥3,0, vi5): the buxes
in the lower left show the C-Space obstacle boundariea and ACE baandisics vhat the brijeciory
hita. Since the bammer s in free-space, it hits no C-surfrcos. Hoawever, it erasses many ACF
boundarics.

expire anc become active “arbitrarily”, this problem might still be formidadle.

However the foliov.ing okservation makes things much casizr:

Claim (56.1): When a constraint expires, anocther “seiphbaring” constraint

becomes active.

For example, consider figure 5.1, which depicts a crovs-sectivn ol a recraueinid A
moving above an obstacle face f. As A translates, it rolites in disection ¢ ¥n
5.1a, constraint {v(, [} is applicable, and (vs, f) is nat. At 5.0b, however, we mowe
out of the applicability region for (vy, f) and (vy, ") becimes active. S.1b is wn
ilie boundary of the spplicability regions, and boil constraints egv apphicable. ¥y
5.1¢, however, {vy, f) has cxpired. (v, f) has replaced {uvy,) iin the appitcabiley
sct. (v2, f) clearly seems like a neighboring constrairt to vy, f), is thav v, @ d vy

aic adjacent vertices on the =dge graph of A. Wc wounld hke to devise an updat~

179

“strategy which, given a Deletelist of cxpiring constraints, could enumerate 5 small
list of candiiates for the Addlist. In general an expiring constraint will be replaced
‘l‘by neizhboring consivaints, However, the neighborhood function is somewhat more
complicated thap in thiz simple example. For instance, imagive that A were rotating
towards the viewpoint {out of the page), leading with vertex vy (see figure 5.4). It
is possible for constraints {v2, £}, {74, f), and (vs, f} to replace (g, f), if the faces
f and {vj,va,v3,vs } are parallel when (vy, f) expires. Clearly vs is also “near” vy,
but not as near as vz and vg. To exploit clsim (5.1), it remains to be scen just
what we mean by a “ncighboring constraint.” We should emphasize that the update
strategy does not predict exactly which constraints wili become active, but merely
a sct of candidate constraints, some of which niust replace the expiring constraints

in the applicability set.

5.5. Using Update Strategies

Let us modify the nzive algorithm to incorporate an uapdate strategy At
configuration s, we computc the applical ‘lity set. The trajeclory pis next intersected
with all C-surfaccs in the applicability < »t, and with all ACF boundaries for these
C-surfaces. The twa lists of intersections are moarged and sorted around the unit
circle. (The sort Ley, once more, is the intcrsection angle). We call this sorted
structure of Cosurface and ACF imwersectione the satersection queue, since it a

priosity gueuc containing intersections. An ewlyy in the intersed “ion queue is a pair:

((_‘--surf;\ce or ACY, Angle of int-mscctiou).

We then travirse the inbessecten feeue i order from s in direction &, taking

the following cottors when we eacowiter o C-sarface or an ACKE intersection:

(1) When an ACFE beaadary i by, a C-surface has expired. Lot the angle of
intarsection b ayp. Sametimes several C-scrfaces expire at once; in this case their
ACYE bounaarics will ali have the guane ictersection angle on the circle. Determine
all the Cosurtaces that cxpie st o) (stimn7 scan down the intersection queue until
an intertection aagle gieater than oy (with respect to diraction @) is found). These

Chsuriaces constitnte the Deletelict Assuine we have an update procedure, which

180

_.,.,

'.—‘l’.')h
N
LY

.0

£

can determine an Addlist of newly active C-surfaces given a Deletelist of expiring
C-surfaces. Cali the updaic procedure with the Deletelist, to determine the Addlist.
(i) Delete ali C-surfaces in ihe Deletelist from the Applicability set.

(it} Delete alt C-surfaces in the Deletelist from the inlersection queue.

(iii) Delete all the ACFs of C-surfaces in the Delctelist from the interscction queue.

{iv) Create an Addlist intersection qucue, i.e., a sorted structure containing the
intersections of ali C-surfaces in the Addlist, and all ACF boundarics of these
C-surfaces, with the trajectory p.

(v) Merge the Addlist intersection queue with the old interscction queue.

(2) When encountering a C-surface interscction, we know the C-surface must
be applicable, since we have not yet hit an ACE boundary which could invalidate it.
(This 1s essentially the correctness criterion maintained by step (1) of the algorithm).
Test to see if the intersection is on the boundary of the C-Space obstacle. Note

that this operation typically requires knowing the appiicebility set.

We then continue traversing the intersection queue (of course, resuming
traversal the next a slightly beyond a; in the & diiection) until cither an cbstacle
is hit or the goal angle is reached. As the intecrsection queue is traversed, steps
(1) and (2) are performed tv update the queue and detect collisions whenever an
ACF-boundary or C-surface (respectively) is cressed. SO(3) is iypically quite dense
in ACF Loundarics: sce figure 5.2. In this figure, the small boxes depict one
dimensional slices (isomorphic to S') of rotation space in the -8 dircction. The
thin line extending ocut of the i
radians, and the heavy line extending out of the circle indicates the goal angle,
which is 0 = 0. The intersections of the trajectory with C-surfaces are shown in the
ieft box (there are none). The intersections of the trajectory with ACI boundaries
are shown in the right box. Each line indicates the angle of intersection Jor an
ACF boundary. The applicability set is invariant between interscction points. The
moving object is shown rotating between the start and goal angle. The C-surfaces : ~ 3 :
and ACFs were generated by the meving object and obstacles showun. However, the ., ""-"F

actual size of each Addlist is usually small. The algorithin works by maintaining a .

to remove C-surface and ACIE intersactions that are not applicable.

b
! correct applicability set as we move in &, and by modifying the interscction queue
E

RO

= TR S N SR/ TR

MG N

“cotrect, but not very useful.

b.6. Upd=zte Strategics

In this scction we finally discuss speeific update strategies. An update sirategy
has two parts: first, given a Deletel st ¢f expiring constraints, it must predict a
set of C-functions guaranteed to contain the Addlist. Second, it must test each of
these predictions to determine which are really applicable. The latter operaticn is
conceptaally trivial, but sirce # is expensive, we wish to make the prediction set

as swall as possible. For example, predicting &, the set of all C-Tunctions is cleacly

A belter approximatizn weuld be as fotlows: gwven & Dualeledst, deteninine
all the C-lamilics {f.e, famiies of C-vurfaces) it represents. A safe prediction
would eomprize ali the G-functions in these famiiles; since clearly an oxpiring
constraint will be replaced by zncther constrzint fromn its own family. In practice
this approximzation has proves ussful, liowevey, it 1s not the best we can do. In
paroicaiar, note that even twe cubioids will gunciate 48 type (o) C-suifaces, 43 type
(v} C-suefaces, and 344 Lrpe (0] C-surfaces. Cleadly the Camily approximuiion is
not a very tighi upiar booend for the replacemnent so, that iz, che Addlist [onr a

Deletelist,

Lot Ve, Ep, and Fp denote the vertivey, edges, and faces of polyhedron P, Vo

a moving polyhedron A and an obatacle polyliedron B, we can exnress the jamnily

Fim
]
&)
=
<

[

(Fa X Vs Va > 350JEA ¥ En).

To be fonmal, this sheuld, strictly speaking, be comidered the don aip of 3 tsction

C which maps pairs of geoeators o the tunction space of C-fuictions, hut %@
'l,‘ y J4Y

1 . . . oy . . - . Mo
wuere thers is 2o amngeivy we will speak of a pait (ga. gy a» representing the *"“ %fm,

covrespondiag C-funcidon Cga, vyt

For an expruing U-function {o4,), we woueld bke toodefine o nephbiorhuod

niay ox a polyhedron P,

3.4

§:%USUsH -WUaUn)»

(where * is the ilecne siar denoting closure) such that the set

Geaa) X Glap) (5.1)

is the smallest 1azimal replacement set for {94, ¢p). In other words, we want (5.1)
to contain all possible replacement sets for (g4, gn), no matter what the rotational
motion; but we also wish (5.3} to be s small as possible so as to minimize the
ACY computations. It is poasible for G to te local in character: although several
constraints in a faruily maoy expire siimuiianeously, ali that we require is that the

union of their replacement seto is coreect.

We conjecture it might be possitle to ind exact--or at least smaller replacement
sets by toking the specific motion ito account. Such a strategy has not yet been
developed, however.

5.5.1. Mathematical Preligiinaries

I chapter 3, we gave an inforwnal definition (by example) of the boundary and
coboundary operators. V/» now define and employ two related operators which can
be composed to define vpuracurs such as “the faces which contain vertices vy, v,

and v3” and “the edge: which are incident at the vertices of these faces.”

Iy ¢his section we defiue the discrete boundary and coboundary opcrators.
Cousider « finite collection of cells, S. The discrete boundary and discrete coboundary

ol 9, denoted 18 and 65, are defined as follows:

A

3S = {J 9s
sCS

85 == 1) 6s.
s¢ &

The discrete buundary and coboundary operators have very different properties
froan the novmal boundary and cobounda:y operators. For example, if f is a face,

. R , e .
then 6°4 = 0, while 0" f = vert f). To seu this, observe that
. L

181

e
fu
Ly

.\- " Nn,rw

VA B

&' f = 82
= U

c(;éj
= vert{ f).

In fact, for any “well behaved” cbhject P (and in particular, any polytope), 3P =0
and 622 == 0 (this is a fundaniental theorem of topsiogy). Ilowever, two (or more)
applications of ithe discrete bovudary er coboundary operator will not, in general,
yisld 0.

. . -4 . .o ' . . .
Fxampies: & {vy, vy, vy) is the set of faces F' which contain at least one of the vertices

o

L

A "l 22.2
vy, vy or vz, Since for ene facs f. 3 f = vert(f), then 3 F = 9 é (vy,v2,v;)
is the vertices of all the faces I'. The set of edges incident at thesc vertices is

-~ :\3 2
L IAN) (vi, 2, 03).

P O I - \?

L2TETCLHET YV ALL I8 U G {4y, Uy, Un)s

Slementary Review: Boundar virds Stz
M tary R Boundary, Cobuundary, and Star

e must show that the discrete bioundary and coboundary operators are well
behaved. We will do 5o by preventing a formal deliniticn of J (and &) on a single
chain, Beaders who have caiconntered a bit of homology will find the demonstration
travsparent. Others miy wish Lo tuke this section on faitu, and vo skip to the next

secuon, where we define the st operator.

Discrete boundary and coboundary operaters can be considered as the ordinary
bovudaiy and coboundary “incdulo orientation.” We re: this as tollows. (For a
more comjieliensive acconrt see any textbook on vlementary topology, for examgple,

Hocking and Young (1061)).

Yt I be 2 arbitrary cricuted comuplex of abstract cells, and 2 an arbitiary
(additively written) abelian group. An n-ditmensional chaiu on the coviplex X with
cocthicients iv .7 is o function ¢, mapping oriznted 7zocells of K to Z, such 1 st if
co\+e) o, than eg(= ™) = 2. A arbitrary n-chain ¢, on K can be written as

thie fonaa inear combination

154

e 2 -

e i
5 5
P

=

PO

R 3
PIERLS
3

where 2z; = cn(+07). The boundary operator 8 is a mapping from n-chains to
(n —1)-chains. 3(2; - o) is an {n — 1)-chain which has non-zero cocificients only on
the (n — 1)-faces of the cell 6. Formally, let [o™, 0™ "] be the incidence number for

o™ and o™ !, that is

0, if 6" 1 is not a face of o™,
(6", 0" 1] = +1, if o} is a positively-oriented face of o,
-1, if e"~1 is a negatively-oriented face of o™.
Hence,
Az ﬂ?): z [a" n'"_ll 2 a1
L'"_l

To factor out the effect of orientation, we decline the discrete boundary operator as

follows:

Az -o") = S lle™ 0™ Y|z - 0L
a1

Discrete coboundary is deflined analogously.
The Star Operator

Let P be a polyhedron. Any cell k is a face of itself, although 1t is not a proper
face. A proper face of P must be lower in dimension than P: If an n-dimensicnal
cell k is on the boundary of P, v.en we call . an proper n-face of P. Thus edges
are proper 1-faces, and vertices proper 0-faces of a 3-dimensional polyhedron. Let
K be somec complex of cells. If k is a n-face of K, then we write K > k. We will

vsually assume that a face is a proper face.

Now, let £ be some set of cells in K. The star of X (in K) is defined by

SUE,K)={oc€eK|(BreX),o>1},

i.e., the set of all cells in K that contain a member of ¥ in their boundary. When
there is no ambiguity we will simply write St(Z). (Giblin (1977), Hocking and Young
(1961)).

For a cell k, define 5 k = k, 8 k = ok, and &'k = 8(3k), (etc). We see
immediately that the star of { k } may be computed as

n .
st({k}) = U &'k
1=0
Using this observation, we have implemented the star operator by recording the

boundary and coboundary of ecach cell in the geometric model.

5.6.2. Local Computation of Replacement Seta
Type (a) and (b) Constraints

Consider figure 5.3. (vy, f) denotes a type (b) constraint. Consider any rotational
motion from the configuration shown. Assume this rotation will cause (v, f) to
cxpire. We wish to determine the maximal possible type (b) replacement set for
(v1, f), that is, the set of neighboring type (b) constraints which could replace (vy, f)

under any concervable rotation.

Consider the set

(3(3v1) —{v }) x {f}. (5.2)

Svl = $v; is just the edges which mecet at v;. The discrete boundary of these
edges is simply the collection of their vertices. v, is delcted, since it is expiring.
Now, consider a rotational motion which causes (v, f) to expire. (5.2) will contain
replacement type (b) constrainis. However, (8.2) is not maximal: consider a rotation
which causes (vy, f) to expire at some cricntation at which a face f' containing vy

is parallel to j. (See figure 5.4). Then all the vertices of f' are replacements for vy,

136

Vy

e
AL
&
N
~,
‘(qTT 7 7 7/ 77 777

Figure 5.3.

that is, the type (b) replacement set is (vcrt(f’) —{v }) X {f} In general, the

maximal predicied type (b) replacement set for (vy, f) is

2

»

g

~
[$2
(L)

T

\vcri(c‘; vl) — v }) {f}
By similar analysis, we see the [ollowing claims:

Claim (5.8): When (vy, f) expires, so will at least one type (c) constraint with

generators in

31)1 X(A')f

Claim (5.4): Sec figure 5.5. When a type (c) constraint (eq,¢;) expires, so must

some type (b) constraint with generators in
éco X 3cb.

187

f
YO S aav AN A SV S S A A AP A

77

L S
A
(.3 /
~ Y2 ’
KQ,_ \\g/: v
~ g ¥ e
v, HA AR A S v
£ % KN v v,
O C o At e e A A S A A (e e 44

¢
SecCion :lmwg‘-\ €

Figure 5.4. (a) A is rotaung above fac: f, out of the pape, (towards the eycpoint). f’ is the
sisible face, with vertices 1y, vg, vy, and v, {B), () show a scetion through f’ us A rotates.
When f aud f? are parallel, v, v, and ©y all heewne active as vy expires. This is & singular
point; as A cortintes to rotite, vg and v, expire, and vy remxins applicable. The instantaneous
replacemicnt set for vy is vert(f) = {v; }.

This aralysis is, cf course, symmctiric for type {(a) constrxinte. In this case, f
would be interpreted as a face of A and vy as an obstacle vertex. The equations

givan all work when the generator pairs are reversed.

Ciaims (5.3) and (5.4) are particularly intcresting, in that they suggest that
we can detect all expiring type (v) constraints by examining vhe ACFs of tyvpe ()

and (b) constraints alons,

5.6.3. Definition of the Nceighborhosad Mapping for the Replacenient

Genecrators

The replaccment set in (5.3) makes a vertain amount of sense: the replacements
for an expiring generator vy arz to be fourd mm the faces containing vy. On

G 15 a simiple generahization of

-

olyhedron P, the general neighborhood function
poly [

198

P

-~

iy ..
A
A48
e

38
O
'l‘?ﬂ‘gﬂ

Figure 5.5. Scction through cp. deq = {v;,va}.

(5.3):

G6(:) = St(vert(-), P),

that is, G(k) is the set of all cells which contain vertices of k as faces.

Iet D be a Deletelist. The smallest maximal replacement get for D is

U 6(s4) X G(9a)-

(ga,90)€ED
This particular formulation requires that we ignore “nonscnse” pairings such A
S

as all members of V4 X Vy. This is easily accomplished by appropriate construction &‘ 3&2

- ﬁ

of the function C mapping pairs of generators to the function space of C-functions. M
i We exiend the domain of C to A X 13, and map all generator pairs except those —
. _ _) WA
| s (T, K V) U(Va X F)U(€a X En) to 0. R
: Sy
1 } [

| X

189 A

N T N AR T S S S, A T I W PV Gr R warves v s ¢ e e ¢ < e o

A Correctness Proof for §

We shall now argue that § is the correct mapping to predict smallest maximal
replacement scts. Lt (g4, gi) be an expiring constraint at some orientation ©. The
! replacement set for a constraint is the Cartesian product of the the replacement
sets for its gencrators. Hence the the replacement set for (g4,91) is r(ga) X r(gn).

Consider the replacement set r{g,) for g4, i.c., the set of constraints

7(94) X {gu}

which will replace (g4, 9;3). This sct of constraints will become active at orientation

6, while (g4, gp) expires. Let

G = {ga}Ur(ga).

Note that (1) all constraints in G X { ¢ } must be applicable at orientation 6, and

Ay %4

] (2) © must lie on the boundary of cach of their applicabiiity regions in SG(3). We

say that at © each g € G is in ACF boundary condition. Note further that r(g4)
is not a predictive replacement set, but any actual replacement set for a generator

ga under some arbitrary rotation.
We will first show that all ¢ € G are coplanar.

All ACFs arc defined in terms of a contact verter and an applicability vester
(see chapter 3). The contact vertex is brought to rest on some applicabiiity plane
(which is parallel to a face of the other polyhedron), and the applicability vertex
is constrained to lic above that plane. When a constraint is in ACF boundary
condition, then both the contact vertex and the applicability vertex of at lcast one
of its ACI's are constrained to lic on the applicability plane. (We consider type (c)
constraints to be composed of four such ACFs, two of which are type (a) and two

or which are type (b) ACFs). In addition, observe that each line segment,

(Applicability vertex, Contact vertcx)

190
o CAAR AR IR A Y ,J},. DRI S:}‘-‘ LA R 'F:(h - N)-.‘.-. '(.'."-'4“—'.!"'4‘" .‘\;P'\.J‘-JJN' o
» R S R FoC e ."‘."F{ - Oa "'-'u..h‘ J o
Rt U n Xt g PRERECTVIY PN I R A SAE v W) J‘}l(:..' NI IS :'/':\. 'f':’.',’ 33-’1:0\.-":# :" N

lies on some edge of cither polyhiedron A or polyliedron B. In fact, these edges,
which we term applicability cdges, cover the edge graphs of both polyhedra, although
the mapping is many-one. We are given a generator g4 for a constraint (g4, gn).
The constraint is placed in ACKF boundary condition. This requires aligning an
(applicability) edge of A with a face of B (or vice versa). (This point is fundamental
to understanding the correctness argument: if both contact vertex and applicability
vertex must lie on the applicability plane, then the applicability edge, which is
an actual edge of A, must be aligned with the plane). We are then asked to find
all constraints which can be simultanecusly placed in ACF bouundary condition.
This is equivalent to askiug, “Given one edge of A aligned with some face of
B, and maintaining this alignment, what additional edges can simultancously be

aligned with faces of B, such that all associated constraints are in ACF boundary

condition?” (By asscciated consiraints we mean the following: the aligned edge is
considered as an applicability edge. Since the applicability edges cover the edges
of the polyhadra, the associated constraints for an applicability edge e4 are those

C-functions for which the orientation of e4 delcimines appli

Now, by lixing an cdge e¢q at some arbitraiy aligned orientation (with a

face of B), we retain one rotational degree of freedom ¢ aboul es. We wish to

choose this rotation such that (1) the constraint associated with ey (i.e, (a4, 905)) & q
remains applicable (and of course, in boundary condition), and (2) a maximal set Y!
of constraints is simultancously placed in boundary condition. The replacement set g.;fﬁ
we compute is the union of these maximal sets. (2) requires a maximal nunber of B::'S'wf
additional edge alignruents, and must also preserve the disjoint interior criterion. EE;E;

4

So c<hoosing ¢ so as to raaximizc the number of edge alignmenis propagates the
alignment constraint. Clearly, by propagating the alignment constraint, we obtain
a sct of coplanar edges (recall that A and B are convex). lach edge represents a

contact vertex and an applicability vertex for (one or more) ACI's in applicability

boundary condition. The associated generators must alse be coplanar.,

We have seen that all replacement generators 7(g4) must be coplanar with

ga- (As asual, there exists a symmetric argument for 7(gp)). Given an expiring T

™
. . s
generator gy on a polyhedron /2, we wish to predict replacement sets. Replacement t
iy
K
, N
T N T MM L W N N A A WAL RINU T I A A }x.:-}:}}}'-;s}\i-,“:\:

rorRead €, .. IR

sets are obtained from maximal scts of coplanar generators which contain vertices
of gp. Clearly, the maximal coplanar sets of generators for a convex polyhedron
are exactly its faces (and their boundaries). Hence, to predict replacement sets, we
must find the sct of faces of P (along with their boundaries) that contain vertices
of gp. This set is

Gler) = St(vert{gr), OF).

5.7. Analysis and Evaluation

We have implemented algorithms for moving in some selected rotational
direction until cither the goal or a C-surface is reached: The naive algorithm (see
section 5.3), the predictive update algorithm based on the C-surface family as a
lcosz maximal bound on the replacement set (section 5.6), and the tncremental
update algorithm based on § (section 5.6.3). We next show that the naive algorithm
and the § algorithm both have the same asymptotic complexity. This means that
their performance will largely depend on the constant factors in the coiiputation.

We discuss empirica! results te Indicate the size of these constants.

8.7.1. Complexity

Naive Algorithm: O(nlogn)

Let N be the number of C-surfaces in the enviroiment (including non-applicable
C-surfaces). If the moving ohject is made up of mg convex polyhedra with kg
gencrators each, and the obstacle environment comprises ng convex polyhedia
with jo gencrators each, then clearly N = jokymong. The complexity of the naive
algorithm iy as follows:

(i) Intersect trajectory with all C-surfaces (O(N)).
(i) Sort, intcrsections around St (O(N log N)).

(iil) For each intersection, dotermine if it is applicable and on the houndary of a
C-Space obstacle. First, test to sce if the C-surface is applicable by examining
its ACI's. If so, there are two options: (1) if the applicability sct is known at thz
interscetion point, we can test to see if the other C-functions in the family are
negative or zero. (2) If the applicability set is not known at the intersection point,
we can compute the displaced face of the Minkowski solid corresponding te the
two generators for the C-surface. Next, test to see whether the intersection point
falls within the Tace. (1) would make this step ()((juk(,)"’mu'n“) = O{jukoNV).

192

0 - v LN AL AN A L e M\ Mar s o E .
1 e RN e Nt Lo Ca P

¢ [
Y3 AR
t‘;“(» -','\'?.’:P‘S-'
SO ORR % 3
Wl Farts

_ &_‘(._'\.-i'.. h a0

However, (2) needs only examine the gencrators of a constraint, and allows this

step to be Q(N). (O(N)).
We sce that the complexity of the naive algorithm is O(N log N).
g Update Algorithm: O(N log N)

The comnplexity of the G update algorithm is as follows:

(i) Intersect trajectory with all applicable C-surfaces and their ACFs. Let the
N

number of agplicable C-surfaces be - < N, and the number of ACFs per
C-surface be a. ({£(1 + a) intersections = O(4)).
(ii) Sort the interscctions around S'. (O(4f log £))-
(iii) For each intersection: Sort, add, and delcte j C-surfaces from the intersection
queue. (O{J log j)).

This yields complexity:

N N, . X
?(logN —log k) + -k—(] log 7)

= O(N log N}.

N, N E
——log— + 3 jlogj =
k k t=1

In the next section, we justify treating k as a constant.
Actual Performance

In practice, the naive algorithm has run faster than the § update algorithm
for the specific problem of rotating until a C-surface (or the goal) is reached. As the
complexity analysis has shown, since both algorithms are O{N log N), the diffcrence
in perforinance will be due to diflerent constant factors. A good estimate for k is
10. For example, in a typical environment with 624 type (a), 704 type (b), and 1872
type (c) C-surfaces, 4 sample applicability sets have sizes 353, 362, 365, and 355. 7
is quite small; for this environment it is typically between 2 and 40. The number of
ACFs per C-surfacc depends on the degree of the vertices. For trihedral vertices,
for example, a < 4 (type (c) C-surfaces have 4 ACFs). Hence this tends to balance

out any possible gaing, since &k is not much bigger than a.

Once more we should remember that the § update algorithm is designed to
solve the more gencral problem of applicability decomposition of SO(3), while the

naive algorithm has been specialized to solve the “rotate to a C-surface” problem.

193

We spcculate that similar specialized algorithms may be developed as fast solutions
to specific spatial planning problems. However, decomposition tools are a more

general solution which can be applied to a whole class of spatial planning problems.

5.7.2. Related Work, Scarching and Lazy Iivaluation

The implemented planning system is described in chapter 2. The control
structure of the algorithin is a search. The search employs certain local operators
for moving between configurations. One such local operator is precisely the “rotate

to a C-sucrface (or the goal)” algorithm.

As for most heuristic? search algorithms, an adversary can probably devise a

find-path problem whick must require an exponential amount of time to solve. This

does not imply that a polynomial-time algorithm using the mathematics presented -

in this thesis could not be devised; indeed, the theoretical work of Schwartz
and Sharir (1982a) suggests this possibility. However, in practice, the planner has
performed quite well. We offer the following explanation foc why the planner should,

in average cases, perform better than in the adversary situation.

In the theoretical work of Schwartz and Sharir (1982a) and Schwartz and
Sharir (1981), the concept of non-critical regions is introduced. A non-critical
region, intuitively speaking, is a region in (frec) configuration space where the
constraints are invariant. We employ similar constructs via scts of non-redundant
constraints, and by means of applicability sets. In Schwartz and Sharir (1981), for
example, free space is decomposed inic critical and non critical regions, and the
conneclivity of these regions computed. The connectivity graph is then searched
for a path. Hfowever, computing these regions is (gecometrically and algebraically)
quite diflicult. The regions are at least as complex as the C-Space obstacle and

applicability regious.

instead of precomputing the applicability regions (or knowing them a priors),
our planner computes them as it explores configuration space. While in the worst

casc the entire applicability decomposition must be calculated, this case does not

ZWe use the term heuristic in reference o the time complexity, and not the completeness of the

algorithm.

194

- -
[e ~Sd 2. |

-

_ %“v .
e A0 T L Lo LW W L L L LA :.mv.xw.w:-.‘:«'o‘\.fn'}{r’ui':;t&MWM"’ﬁQ*I",_&:ﬁ‘:: -‘i:

arise in practice, We effectively adopt a policy of lazy evaluation of applicability ir

devising the planning algorithm.

LR R -~
hY

-t SO A A W *
w a\.ﬁ-@.&h.-{'lu\:&a"‘a A

Y Y] U PO W e G DG S R I S S
x .;'_‘ﬁ L\\&. A WA OO W RIS W

_ 6
The C-Voronoi Diagram and its Relationship
to Intersection Manifolds

6.1. Introduction

Tlor a finite set of points P in the plane, the Voronot diagram is the set of all
puitts in the piane which are equidistant from two or more points in . The Voronoi
diagraic for P is a network of straight linc segments. Drysdale (1983) introduced
the generalized Vorono: Diagram {or GVD) for the plane: for a set of polygons in the
plane, the GVD is defined to be all points in the plane which lie (perpendicularly)
cquidistant between two or more polygons. The GVD is a network of straight line
segments and parabolic sections. Il the polygons are considered as obstacles, the
GVD represents the network of paths through free-space which maximize clearance
from the obstacles. Brooks (1983a) and O’Dinlaing and Yap (1982), O’Dinlaing,
Sharir and Yap (1982) have developed definitions and algorithms ciaploying an
extension of the Varonoi diagram for low-dimensional configuration spaces. Nguyen

(1983) also discusses the relationship of global methods to the GVD.

More formally, the generalized Voronoi diagram (and its extensions) decompose

the free space into a set of regions, { I2; }, such that all points X ¢ R; are cleser to
one obstacle than Lo any other. Thus points on the GVD are equidistant from two

or more cbstacles.

o AT ARG Y Y O DS B N NN L ry . RN
\'_w..,_.\l,l\\“t_._*a N . . . i . .) .

]

\]

X
N
k .'h. .»_‘a.; RS

'ty ! i
o

w %".
""Q“‘
» JBak

N

\ |
AN\ O

*

wv- bisector A

Figure 6.1. A picturc of the generalized Voronoi Diagram for a bounded 2D workspace containing
four polygonal obstacles. Reprinted with permission from Nguycn (1983).

In this chapter, we extend the concept of the generalized Voronoi diagram to the
six dimensional C-Space ¥ X SO(3), to provide a formal, constructive definition
of the C-Voronot Diagram, or CVD. The CVD is an attractive construction, in that
it contzins a representative component for each “branch” of frec space. Each such
component is submanifold of dimension 0 < d < 5, called a Voronot manifold. We

will derive the following conncction between intersection manifolds and the CVD:

Let p be a path along the CVD. p lies along a connected chain of Voronoi
manifolds, Vi, ..., Vi. We demonstrate that for each Voronoi manifold V;, there
exists an cquivalent intersection manifold of level C-surfaces, I;. Furthermore,
we also show that for every connected chain of Voronoi manifolds, there is an
equivalent connected chain of intersection manifolds (of level C-surfaces). (The

equivalence we demonstrate is actually stronger that homotepic equivalence).

This yiclds an immediate (theorctical) completeness result for planning along

intersection manifolds, While our proof is constructive, it cannot be considered an
effective procedure. The charts for the Voronoi manifolds are undoubtedly very
difficult to derive. This in turn makes it hard to develop planning algorithms along
the C-Voronoi diagram. In C-Spacre, the most attractive feature of the CVD is not
that it maximizes clearance from obstacles, but that it represents the connectivity
of free space. In other words, given the CVD, the Movers' problem can be solved
by connccting the start and goal configurations to the same connccted component
of the CVD. But since the Movers’ problem has already been reduced to the task of
navigating a point, it is clear that, modulo some uncertainty bound, we do not r.ced
to maximize clearances while in planning paths in C-Space. We demonstrats. that
instead, it is possible, in principle, to devise a planning algorithm along intersection
manifolds-~for which we have derived charts (chapter 4)—which is equivalent to a

planner along the CVD.

Generalized Voronoi Manifolds

In this scction we define the C-Voronoi Diagram (CV D) for the configuration
space N3 X SO(3). Note that for Euclidean configuration spaces we would employ
the standard techniques (Drysdale (1983)). The metric in %% X SO(3) is non-obvious,
and the CVD does not reduce to the GVD when rotaiions are factored out. [lowever,
it has the same connectivity as the GVD. The CV D for configuration spaces without

a BEuclidean distance metric is fundamentally different, and is defined as follows.

To deline the CVD, we rely on the collection of pseudo-mctrics provided by
the geometric interpretation of C-function values (chapter 3). Intuitively, within
some well-defined region in free-space where a C-function is non-redundant, its
value characterizes the translational distance to cither (1) an obstacle face, or (2)

the plane of the obstacle face. Formally:

In this chapter, we will use 7 C R% X SO(3) to denote free space. See chapter
2 for a formal review of charts and atlases. As noted in more detail in chapter 2, in
this thesis we usually specify charts via the inverse form b : " — M (where E™ is
an open subset of ") with the understanding that it is the inverse (or set of local

inverses) h™! which provides the family of charts { (R "1, W;} }, for U; W; = h(E™).

198

IS e R, LY T B R e R T e T e e T St i L o S Y
AN AN SN NI W WO SO LAENENONIAGY

= \',‘\1"‘

2 T O

#
X :"!::
< ‘.‘:‘:V
¥ty

WMHWWWM—“-.-~“ T —————— ——— =~ -

P T T v —— -

)
+

Definition (1): Let M be the sct of families of C-functions on) N S0(3). Tor
X € F, let Ay be the set of maximum, applicable, non-redundant C-functions
within families, that is, if M € M is a family of C-functions, and M' C M is
the subsetl of applicable and non-redundant C-functions at X, then M contributes
to Ay the function f € M’ such that f(X) > k(X)) forall hE M' - {f}. If k

functions in M ' tic for maximum, then M contributes all k£ to Ay.

Let n be the dimension of C-Space. Now, X € CV D if there exists a maximal
subset I? of Ay, containing at least two and no more than n C-functions, such that
all functions in B have the same value by at X and all functions in Ay — I3 have a
value greater than by. We say that X € CV D lies on an (n — |B| 4 1)-dimensional
Voronet Manifold. The C-Voronoi Diagram for C-Space is the union of these

Voronoi Manifolds.

We have scen that a level C-manifold is analogous to a level surface in ®?, in
that it is the set of configurations { X | f(X) = £} for some applicable C-lfunction
f. Clearly, points on a k-dimensional Voronoi manifold V lic on the interscction of

n—k -+ 1 equil level C-manifolds, i.c.,

N(X) =+ = fa_ke{X) = 4X)

where the level 4 X) is allowed to vary as X moves along V. Furthermore, we insist

that the C-functions f; constructing the Voronoi manifold must belong to pairwise

When we say that a Voronot manifold V; is constructed from a sct of constraints
I;, we mean that all the C-functions f € Fj have equal value along V;. An intersection
manifold constructed from Fj is the intersection of level C-surfaces for constrainis
in I;. By this we mcan that first a level 1s chosen for each f € Fj, and then
the resulting level C-surfaces are intersected. In general, a level C-surface for a

C-function f at level £ has the form

5.

199

WAL A AN Y AN T ALY \
R AR R A A A e TR A LR LA A e e L

S R L L T S At S Sy Ay
2 - R R

-4'

7
A

fad
z
e

S

5y

'. ‘, I.
R
-‘l‘.l‘,l ‘x

3>
e

Y
275

<

2

AP L)

P
o }

NN

L8

IMigure 6.2. Strongly equivalent interseetion manifolds, and the bridge manifolds connecting them,
Each V; is strongly equivalent to J;. Each bridge manifold Byiq1 is equivialent (but not strongly
equivalent) to Vi.

fY(2) is the trivial intersection manifold, that is, the manifold constructed by
intersecting one level C-surface with itself. The intersection of two level C-surfaces

is

L=~ (t)N g~ L)

The intersection manifold I{ is constructed from the same C-functions at different

levels: Tgede
e
.‘:'_
1= N). R
'y o
An QOverview of the Proofs rat

Let p be a path along the CV D, p lics on a connected chain of Veronoi
manifolds. Call this chain V,,..., Vk. For a Voronoi manifold V; we say that an
intersection maunifold I; is equivalent to V; il (1) the set of C-functions which
construct, V; is a (possibly non-strict) superset of the C-functions F{ which define
I, (2) I is homotopically equivalent to V;, (3) I; lies in iree space, and (1) all
C-functions in F satisfy definition (1) along I;. If £ = F{, ie,, I is constructed

with exactly the same C-functions, then I; is stronoly equivalent te V.

Note that by definition, each V; is restricted to where the conditions of definition
(1) hold, i.c., to some region N R(F;) C F where all C-functions in Iy constructing
Y, are maximum, applicable, non-redundant C-functions within familics. Now, in
general, I; is an unbounded level set which cannot lie in free space everywhere.
Thus by convention, we also restrict I; to the region of iaterest NR(F]) where
all C-functions in ! satisfy definition (1). That is, NR(I']) == {X | I'l C Ax }.

Instead of writing I; N N R(F!) everywhere, this convention is assumed throughout.

In is an interesting question whether, for every Voronoi chain Vi, ..., Vi, there

exists o connected, finite, corresponding equivalent or strongly equivalent chain of

intersection manifolds Iy, ..., Ix (where k is not necessarily equal to k). Theerem
(I) shows that fur all Voronoi manifolds V;, there exists a strongly equivalent
intersection manifold I;. These I; might not forin a connected chain, Theorems
(1) and (1i1) show that each disconnected pair of intersection manifolds I; and
Z;iy1 can be connected by an infinite sequence of “bridges.” LBach bridge is an

intersection manifold cquivalent (but not strongly cquivalent) to Vi. We then argue

that since there exists an infinite bridge sequence, therefore there must also exist

o
a linite bridge sequence. Iinally, (theorem 1V) we show that there exists an entire ™
VP\‘- W
intersection chain roa R
sec h E‘ﬁ

nyU-- U ' 'r_i.‘x:‘

which is homotopically cquivalent to the entire Voronot chain £

Vi U - U Vi '__:\.:;:

i 2
201t AN

P T P AR P e e | a W T TV e TR 5% A% e e N TS 1 AV JUC IR T Je s NV T T W S SRR R T TR O RS T I BRE Tt e I
A P R T e N A AR S B N A N A AU I AR 2 AN A s T VR P A

Theovemn I: Let Vi be an m-dimensional Voronoi manifeld, constructed from a
sct of applicable, non-redundant constraints A, which satisfy definition (1) along
Vi. Then if there exists an intersection manifold Ii of level C-surfaces for the
constrainis A, and if the constraints A satisfy definition (1) along Ik, then Vi and

I, arc homotopically equivalent.

Prool: We will show that two intersection manifolds constructed from the same
C-functions at different levels arc homotopically equivalent. Next, we demonstrate

that the Voronoi manifold is essentially a special case of intersection manifold.

Let Vi be an m-dimensional Veronoi manifold,

= {X | fi(X) =" = £}, (n=6-m+1)

where the f; are choscn from A as defined above (sce delinition (1)). Note that

»

4

g the value of the f; may vary with X € Vi. Let I be a {m — 1)-dimensional (or

P G-dimensiial, if 7 = 0) intercection manifeld of level C-surfaces constructed from

g the same functions f;:

b L= {X | A(X) = b, (X)) = b, ..., falX) = tn}.

i The region of interest for Vi 2nd I is of course restricted to NF({ fi}), where the

:: functions { f;} satisly definition (1), Ji differs from Vi in that on Vi the values

E (levels) of the functions f; are equal, whereas on I, they are not. Furthermore, on
Vi the value varies, whereas on Ji the values are fixed.

I; may be expressed as

L

The claim is that I; is homotopically equivalent to Vg, thatis, that if g : L
is a chart for I and g’ : Itk - Fis a chart for Vg, then there exists a continuous

howmotopy Jdefermation b : EX % I' — 7 between g and ¢’ such that

202

: \5

h{(Y,0) = g(Y)
hY 1) == g'(Y).

As usual, I' denotes the unit interval [0,1]. For a review of eicmentary

homotopy theory consult appendix 1.

The charts g and g’ exist, since I and Vj are manifolds. (Assume without loss
of generality that only one chart is required). A level C-marifold f;'(¢) (for some
level £) is a 5-dimensional manifold and hence there exists a chart O E® — F for

F7 (). We demonstrate such charts in the proof of claim (I.1), below.

Let £y be any achievable value for the functions f; along the Voronoi manifold
Vi, that is, any £y such that there exists some X € Vi satisflying definition (1) Tor
which

fl(X) = = fn(X) == £y.

AY
H = —

-y .a £ a . . 1 1. . ~ a1 1 1 A .12 £ [P
IVOWJ T(z +tl —l;}("\'l 15 A INCATY CHOINMTIALION O) LU 1ICVEIS £; alld) f‘.)l Ji SluL’U 'Jd-'-h

level C-surface

f;'(tz,- +(1 - t)ify)

is a manifold, each has a chart of the form Cj, above. If ¢t € [0,1], these are
C-surfaces for f; with level £ € [€y,¢], and their charts may be parameterized!
by t. Suppose we have a set of several level C-surfaces (as in Ii). Their charts
may be intersected to form a new chart for the intersection manifold. We define

h: E* x I' — F to be the chart for the intersection nanifold at i, such that

h(E* t) = ﬂf;‘(te,- + (1 — i)ey).

We call h a chart fumily for the interseclion manifold.

Claim (I.1): The chart family A can be constructed such that k(Y t) is continuous

in Y and ¢, within the area of inte-est for Vg and Iy. (For proof, sce below).

1Sce the proof of claim (L1), where ke is such a chart.

203

Recall that £; is the value (or level) of f; on the intersection manifold Jx. ‘Then
h:E* X I' — ¥ is a homotopy between g and g, that is, h continuously deforms
It into Vi(¢y), where we use Vi(€y) C Vi to denote the Vorouoi manifeld restricted

to level Ly, i.e.,

V() ={X | i(X)=--- = fuX) == by} C 7.

Verify that

R(EF, 1) =17 '(%)

= Ikr

and that

B(ER,0) = () £71(ty)
== V;C(Cv).

We have shown that Jg == Vi(€y) (== denotes homotopic equivalence) for all
achievable £y. We must now show that Vi(€y) =5 Vi(fy + ¢).

We are interested in continucus deformation within 7. Hence V; may be
multiply connected within 7, so long as it does not wrap around obstacles, Vi must
be contractible to a point (within 7). This is guaranteed by the construction of A
(definition (1)) and V, i.c., by the choice and domains of the functions f;. To see
this, counsider that if Vi did wrap around an obstacle in C-Space, then the value of
some f; would have to go negative. ilence, it would become redundant, and could
not, be used in the construction of V.. Note that the C-Voronei diagram, which is
the wnion of Voronoi mantfolds such as Vg, will, in general, wrap around obstacles

and be tnultiply connected.

Furthermore, we can choose ¢ such that the topology of Vi does not change
too drastically between Vi(€y) and Vi(£y + €). (This is possible since Vi is
finite-branching). So

: f':d N p‘i ."47...‘_..‘- ‘."‘f ;- ll‘n" u.‘.‘g o Y HEH "5!'; 34 ¥ S e TR :
"’:"'f'!ar?*qr?ﬁh:”'i':';’t':“f’:*:‘:'f‘*‘:‘-'O"'{'-.“p'b‘ff"-"';' X O O R T R TR R A R R AL W3y Y

% o= V(€)= Vel€y + €0) =5 Vil€y + €2) =2 -+ 22 Vel€y +¢,).

What we have shown is that J; is homotopically equivalent to the “easy” parts

1)
At

b,
of Vi (where the level of the Voronoi manifold is constant). We next showed that i '*‘-’_-‘__

because the topology of Vi is simple, we can paste together these restricted Voronoi

. manifolds. g

Proof of Claim I.1: The existence of a continuous chart family for the intersection
mauifold is based on our knowledge that the manifolds exist at certain levels, and
from our ability to demonstrate such a chart for the intersection manifold. In

chapter 4, we exhibited C-functions of six variables for the C-Space ®* x SO(3):

fi :(z:y:z)¢;0v¢)'—bm

which are coatinuous, alhuc in z, ¥, and z, and multilinear in the sines and cosines

of tue angles ¢, 0, and . The Linear Form for a C-function f; : R X SO(3) - R,

is an equivalent expression

fi(2z,u,2,0) = 15 (O)x + Eu(O)y + ()2 + I4(8), (6.1)

where E; : SO(3) — R (for 7 == 1,2, 3, 4). Now,

1:'0) = ke ((2,3, 2,9,0,0) - £,

A chart for f;'(€) may be found by solving

fi(miylz"rljloiqs) —2 = 0

for = (or ¢, or 2) in terms of the other variables and ¢

Egy+E3z+E4 -2
E,)

—_—

(We have dropped the ©, since the functions E; arc constant with respect to z, y,

z, and ¢). If Ey = 0, then the solution for y or 2 may be employed. This yields the
obvious chart

C: E® - %' X SO(3)
I e
(y; 2,1,b,0,¢),_, (__A—JZ!/""E;;-EZI-{- E4 2

U, 2,9,0,4)

which we presented in chapter 4. C is affine in ¢, and can be uscd to construct a

family of charts

he : (Y, £) = R X SO(3)

Yy = f;‘(te; +(1 - t)lv).

which is continuous in ¥ = (y, 2,4, 0, ¢) and £. hg is clearly a homotopy between
level C-manifolds for f;.

hY rd

—17a ~ m=Yra N a a1
S [N TN),
(and so on) by solving the C-functions simultancously for the intersection manifold.

Chapter 4 also derives ch

For example, a chart for the interscction manifold oi degree three

-1
()
i==1,2,3
can be constructed by solving three simultancous equations with the form of (6.1).
For arbitrary cocilicients J7; and levels £;, this intersection may not always exist,
However, we know a priers that it exists for the specified levels £; and £+, IFrom

the forru of {6.1), it is clear that if the intersection manifold exists for some levels

206

JEIE AR X AL \ g K SRS
R B A LN Y O AT AR A R R AR S I O A O O U Xt PO A‘-,'d.:~, R
’ TR

R
IR
B % |

R e

£; (and if the cocflicient functions I7; are independent), then it will exist for all
levels. We omit a discussion of intersection marifolds of higher degree: the reader

is referved to chapter 4 for further details. g

Corollary: For every Voronoi manifold V;, there exists a strongly equivalent

intersection manifold I;.

Corollary: If I; is the set of constraints used to construct V;, let NI2([I) denote
the region in free-space where all of the constraints in F; satisfy deflinition (1). If
V; cxists, then in every connected componcent of NR(F;), there exists a strongly

equivalent intersection manifold I; built out of F;.

Proof of corollaries: Al f € F; exist within NR(F). Pick any X € NR(F}).
Evaluate all the functions in F; at X to obtain a sct of levels. The intersection
manifold must exist at these lcvels, since we have demonstrated that X is on the
intersection manifold. The intersection manifold from the C-surfaces at these levels

1.0t JA T S {1
i

PO PR DI A
is VY UIIWLGH 80N oY theoren

1
18

Next, observe that for all 1 < ¢ < k, cither V; C V41 or Vipy C V. In other

words, to move from V; to V;, |, we either add or remove one or more constraints:

Vi={X|iX)=" = [}
vi+1 :{lel(x)—: =fki+l}

and either k; > kipy ov k; < kiyy. We call k; and k;, the degree of the Voronoi

manifolds.

We have shown that for a Voronoi chain Vy,..., Vi, a sequence of intersection
manifolds Ij,..., I may be constructed such that each I; is strongly cquivalent
te V; (for 1 € 7 < k). However, the sequence of intersection manifolds may
be disconnected. We now furnish a theorem demonstrating that the intersection
manifolds may be constructed in such a manner that they can be connected together

by a serics of special intersection manifolds, called bridges.

Theorem Ii: The intersection manifolds Iy, Iy, ..., It may be constructed such

that each pair of intersection manifolds I; and I, | can be connected by a sequence

207

of “bridges.” Each bridge is an intersection manifold equivalent (but not strongly

equivalent) te V;.

Proof: Let I) te a strongly equivalent interscction manifold to V;, constructed
with C-functions Fy. Along Iy, all constraints in Fy are non-redundant. Let Vs
be the next Voronoi manifold afer V; in the Voronoi chain, and let F be the

constraints constructing V.

Case (i) U Fp C Fy, then V; is lower in dimension that V. We can coustruct
I,, a strongly equivalent interscction manifold co Vi, which is counected with I,
be removing one or more constraints in Fi. (We remove exactly the constraints

Fy — F3). This is possible because if F3 C Fy, then NR(F) C .NR(Fz):

L= N £7le)

[iER

= () fi'c) (6.2)

fi€Fy

Strictly speaking, cquation (6.2) should employ the subset notation (C) instead of
equality (=), since Jj and I, arc restricted to where the intersection is applicable and
non-redundant. However, the equality makes the construction more transparent.
Note that the construction still works with the subset notation, since INI(F}) is a
subset of N (F%). Since Fo C Iy, I and Iy agree on the levels for C-functions in
Fy. Since I} C I3, I and I are connected.

Case (ii-a): Suppose, however, that Iy C Fp. Then V, is lower in dimension

than V;, and IVR(F-,:) C NR(Fl).

We know that I; € NR{F). f I} N NR(F;) 5% 9, then we can construct Ip
from F, such that J, C NR(F), I, C I;, and in addition, I and I; agree on the
levels in Fy. Construct Iy as follows: pick a point Xp € I} N N R(F}). £valuate cach
f; € Fy - Fy at X, to obtain a level ¢; = [i(Xy). Construct:

r=10(0 5C)

Ji€Fy-F,

)

LA L B P AL IO 0 i 00 B T TR OO A T AT Tt A o o N 0 2 0, A o M g S S -"ﬂ'\‘.';".‘:‘.\:":':'}“

MRCEY

Figure 6.3. Casc where I, [\ NR(Fs) £ 0.

We showed earlier that I may be constructed in this manner.

Case (1-b): The hard case is when I; N NR(F3) == 0. In this case, we must
construct some strongly equivalent (to V;) intersection manifold I C NR(F;) with

different levels from I} with respect to the C-funciions F}. We then buiid a scquence

0%
[2s
-
@
=

of bridge manifolds, entirely within NR(F}), between Ii and I3, connectin
together.

The bridge intersection manifolds are constructed out of some subset Fn C 1,
and each bridge manifold is equivalent (but not strongly equivalent) to Vy. The
bridge manifolds are ferined by relaxing one or more constraints in F} to be able
to move from N R(F;)— N R(I}) into N R(F,). The motions slide along intersection
man‘folds constructed from the remaining constraints. Once inside NR(F3), we
construct J» there, and I, is strongly equivalent te Vy. Note the levels at which Iz

is constructed, (with respect to the constraints in Fy), arc typically different from

209

-J,vn(";\

Cheiry

Figure 8.4. Case where I} Y NR(Fy) = €.

the levels at which I; is constructed. The existence of bridge manifolds is covered

in theorem III. g

We will use the dot notation for the Riemannian inner product on the tangent
space at X. The normal to a level C-surface f~1(£) is Vf, and depends on the
inner product. We assume throughout that the normals are unit vectors. A basic
concept in these proofs is that of general position, or transversality (sce Hirsch,
1976). Two submanifolds M, N of a manifold V are in general position if at every
point of M NN the tangent spaces of M and N span that of V. If A and B are
not in general position, then arbitrarily small perturbations of one of them will put
them in general position. In our case, M and N correspond to level C-surfaces and
their intersection manifolds, and V to %3 X SO(3). The proofs still work even if
M and N are in gencral position only at “many” points of M N N. We will write

the condition of gencral position for two level C-surfaces f~!(¢;) and g~'(£;) as

Vf-VgF#1.

?hl -

.;5{- ;..1'5
_ LY ‘l‘t...'.
BN
!:ﬁ.@.‘t't‘t'
ok A
oy ‘ A N

L}
.

4 B
§a ‘ . i .

Am-gijg"‘? AW W - —

-
4

S

Theorem Ul The Ezistence of Bridge Manifolds: (Bridges of dimension five).
Let S be a path-connceted component of NR(Fy), Xy, X € S, and f, ¢ € . Note
that S lies with in the domain of f and g, and that by construction, 7(S) is an
open set. Then if Vf-Vyg £ 1 within S, then there exists an infinite sequence of

five dimensional bridge manifolds within S, connecting Xy and X.

Proof: Each bridge manifold will be of the form f~'(c;) or g7 (c,), for diflerent
levels of ¢; and ¢y Note that as we vary c;, f~!(¢s) covers S (similarly for g).
Let Tx denote the six dimensional tangent space at X. If ¢g = f(X), the level
C-surface f~'(cq) is a five dimensiunal submanifold of R X SO(3), with a five
dimensional tangent space, Tf\,. That is, identifying Tf(with a subspace of Ty,

Th ={veTx|v VfX)=0}.

It is easy to show that T% UT% spans Ty, for all X where V f(X)- Vg(X) 5 1.

Let N& denote the normal space at X with respect to f, such that

N{ ={veTy|v==aV(X)},

for all scalars @ € R. So Tx = N§ @ T. Clearly, if Vf(X)- Vg(X) 5 1, then
N/ is spanned by T& UTY%. lence 1’y == T‘{(+T1%.

Since the space of differentially tangent directions to the two level C-surfaces
at X is equal to the space of all dircctions, there exists an infinite scqucnce of
differential moves along level C-surfaces for) and ¢, at different levels, to realize
any path within S. Since S is connected, there cxists such a path from Xy to X;.

Corollary Il1.1: (Bridges of dimcnsion four). A direct result is the existence
of a sequence of bridges which are four dimensional intersection manifolds. Let fy,
f2, f3, fa € F. Suppose that within 8, Vf{X) Vf;(X) 5% 1 (for « # j). Then
there exists ar infinite seiquence of bridges between X and X, where each bridge

i of the forin

P se

-
'1.4

v
!

e <2k

-_i‘ — ety of £

I

El..—-"j_!\

Figure 8.5. A finitc path iterating along levels of f and levels of g.

In(i,5) = £7) N 15 (<) (i 7 5)

J
normals are all indepeadent at X, then the dircct sum of the tangent spaces to all

possible intersection manifoids Ip(t, 5) is clearly Tx:

Tx = (TENTH+ T NTH +- +TENTH +- - + (TR NTY).

(OF course, 1 5£ 7 for all terms in this sum). §

Corollary 1I1.2: (Existence of a finite sequence of bridges). We now argue that if
there exists an infinite seq .ence of bridges from X to X within S, then there also

exists a finite sequence.

212
- 2 A w\,V\ PLLEERLRES T -y - RV RN S, P, 0 1 P Ty
3 ") . h@ [, W

Informally, we argue that it is always possible to Lo move a certain distance ¢
along cach level C-surface, and that this ¢ cannot grow arbitrarily small. First of
all, note that S is not infinitesimal, and that i(S) is an open set. (If it were not,
it might be necessary to make an infinite number of differential motions to remain

within S}.

We also appeal to the well-behaved structure of the level C-surfaces, and their
intersection manifolds, The level C-surfaces are smooth, with normals that change
continuously. (If the normals changed discontinuously, we might not be able to
take finite steps). Thus we can move a finite (i.e., not infinitessimal) distance along
the surfaces to a point where the normals are still independent, and where the

surfaces are ¢

‘sirilar” (i.c., having normals in almost the same dircction as before).
Furthermore, for any two levels of f within S, there cxists a homotopy between
them. These cbntinuity arguments indicate that it should be possible to move in
finite steps along the intersection manifolds, and hence we can reach X from Xy

ir a finite number of bridges.

Suppose from X to X there exists an infinite scquence of bridge manifolds,
but no finite sequence. Then either (1) #(S) is not an open set (and thercfore
only differential motions can stay within it), or (2) for a subset P C S, whose
cardinality is that of the continuum, the eatire tangent spacc is not available along
the level C-surfaces. In both cascs, our initial hypotheses are violated. (1) violates

the assumptior 7(S) is an open set, and (2) the assumption of general position,

We formalize this argument as follows:

Definition: Let U be a metric space, and p, p’ : I' = U be paths in U. Let { Uy, } 'S. ':ﬁ!:

. : C AT

be an open cover of p(I') in U, where each U, is a neighborhood of radius < 7, ;‘“ .:::Q

| and Ua Np(I') 5 0. We suy that p’ approzimates p at resolution v if {Uq } is an c'j:‘,::é
open cover for p/(1') also; that is, if p'(I') C U, Us. ‘ T -f'!’j

! Wy
\ Claim (I11.2.1) shows that an arbitrary curve in some neighborhood U of .E:::.:::t:::
I A
free-space can be approximated by a path within U along a finite scquence of ::::?,:‘.E::';

()

intersection manifolds. The proof of Cor. (1i1.2) then employs the fact that the curve vl

P Cay -

is compact, and thercfore can be covered by a finite number of such neighborhoods. ',:. \

[7 AT e e g X

AT N A AP N A

M ISR YU RS KA RN PO RN AN i 1L M KK 0K

Figure 6.6. Let co = f(Xo) and ¢; = f(X;). Xo lies on f~¥co)Ng="(c), and X, lies on
f‘l(cl)ﬂg“(cf). The path segment between Xy and X may be approximated by a path sliding
first along g~!(cg) from Xp to X', and then from X' to X, along f~'(¢y).

Clatm I1I1.2.1: Any path within a neighborhood where f and g are defined, may
be approximated to an arbitrary resoiution by a finite sequence of motions along

level C-surfaces of f and g.

Proof: We will regard level C-surfaces of f and g as trivial intersection manifolds.
Consider how one can approximate a path from Xgo to X; by a path along
intersection manifolds. Let d be a metric on R X SO(3), aud f, g be C-functions
with inverse images covering a neighborhcod containing X and X. Let ¢g = f(Xo)
and ¢ = f(Xl)on lies on the intersection manifold f—l(co)ﬂg"(cg), and X lies
on f~Ye1)N g~ "(c]). Construct f='(c1)N g~ (ct) (refer to fig. 6.6), and choose X'
to be the any of the closest points to X on this manifold. We can construct a path
which slides from Xy to X' along g"(cof), and then slides from X' to X along
f~Y(e1). We wish to demonstrate that by choosing X sufficiently close to X, X'

can be madc to lie arbitrarily close to Xp; that is, for all € > 0, there exists a

* and cg' = g(Xg), o' = g(X).
’ 214

L AN

. . . R .- - - LIy »
T L e L LN L e T Ca D TR AT T (NS e T

e w)

- PR WRAE TR TR T AR SRR BR O TR TS T T T

6 > 0 so that d(Xp, X'V < ¢ whenever d(Xy, X;) < 8. This is definitional, since

limx, —x, £~ e1) = fco).

Thus for every neighborhood B,(X) of radius r about Xj, there exists an X €
B,(Xy) such that X' € B,(Xp) also. Furthermore, d(Xg, X') is finite (and non- zero).
Of course, a similar argument holds for the path segment between X and X', Thus
any path within a neighborhood where f and g are defined, may be approximated to
an arbitrary resolution by a finite sequence of motions along intersection maaifolds.

|
Clearly, similar arguments hold for intersection manifolds of higher degree.

Proof (Corollary II1.2): (Sketch) Let p{I') be a path within i(S) from Xj to X,
along an infinite sequence of intersection manifolds. In short, p(I') C #(S). Choose
an open cover { U, }, relative to R3 X SO(3), for p(I!) such chat U, Uy C i(S).

p(I') is compact, hence there exists a finite subcover, i.c., for finitely many indices

| ay, ..., a,, we have
p(I") C Uay U---UUa, C 4(S).

Now, for each U,,, we can construct a path p'(I') along a finite sequence of
intersection manifolds approximating p(I') 1 U,, (Claim I11.2.1). That is, p/(1!) is
also contained within the closure of U,,. Furthermore, it is not hard to construct

p' such that it leaves the neighborliood Uy, at the same points as p, that is, so

+Y . 1

+ () m rr
Lildu p\(

Y 4]
JI 1oV,

N TS A R WY 2 Q o at v i f Lnrr t! iy g, TIY 1
=y \1)] |UUQ... QiNnce uiils 18 vrue lor ait Ua.., e [J\.l) cdll pe

approximated by some path contained within U,, U+ 1JU,,, and which lies on

some finite chain of intersection manifolds. &

Theorem (IV) is almost immediate, and its proof similar to that of Theorem

(D

Theorem IV: For every connected chain of Voronoi manifolds Cy = Vy,..., V,
there cxists an equivalent (in the sense of theorems (I—III)) connected chain of
intersection manifolds C; = I1,..., {is such that the entire Voronoi chain Cy is

) homotopically equivalent to the intersection chain €. That is,

TR BTN | ST M
NSBE

LA oy UaPd e T L, o
T Nl R, LW A I
2 a% 2 A A'I.AAA s 2" o

U ‘v,-'::,. U IJ‘.

YieCv LieC;
Proof: Simply apply the fact that each equivalent pair (V,I) (where V is a
Voronoi manifold and I is an cquivalent intersection manifold) must lic in the same

non-redundancy region. Hence if one chain wraps around an obstacle, se must the

other; furthermore, each chain must wrap around the same obstacles. B

Future Rescarch

There are several interesting problems which are left open. They include the

following:

(i) We have demonstrated an equivalent chain of intersection manifolds for any
connected chain of Voronoi manifolds. Show whether or not a strongly equivalent
chain exists also,

(ii)) Show whether or not for every Voronoi chain Cy there cxists a (strongly)
equivalent intersection chain exhibiting a bijective correspondence to Cy.

[ESAR NN o WNPLINU UG o Yy SRy PUREPIR SRy :
{11} L/EVIDE an CUeclive procedure for constructing a ¢

to realize any class of patks in frec space.

intorsect 'n manifolds

(iv) Derive complexity bounds on the construction of the C-Voronoi diagram and
the cquivalent intersection chains.

(v) Other configuration spaces, such as those arising in the hinged body problem,
should be considered.

(vi) To extend these results to coafiguration spaces generated by real space
constraints which are not polyhedral (for example, algebraic surfaces), a
gencralization of the GVD such as smocthed local symmetries (Brady, 1982b)
could be considered.

218

O R Ta T K A P XA S A J ARV

7

Conclusion

In chapters 1 through 6, we developed representations and algorithms for
automated spatial planning with six degrees of freedom. To demonsirate the
compétcnce of the representation and the feasibility of the algorithms, a planning
system for the classical find-path problem with six degrees of frececdom was
implemented. The planner is of considerable intrinsic interest, in that it is complete
(for a given resolution). Experiments have demonstrated that this algoiithin can
solve find-path problems requiring six degree of freedom solutions that were beysnd
the competence of carlier, approximate planners. The mathcmatical framework

developed here impacts a class of geometric planning problems for three dimensional

The planning algorithm may be explained by analegy with the Point Navigation
Operators. The C-Space transformation reduced the motion planning problein to
the task of navigating a point in R* X SO(3). Since the path for the point must
avold the (C-Space obstacles, which are curved, six dimensional manifolds with

boundary, clearly paths can be found in C-Space by the closurc of threc operators:

(i) slides along 1- to 4-dimensional intersections of level C-surfaces;

i) slides along 5-dimensional level C-surfaces;

(i
G

i) jumps between 6-dimensional obstacles.

217

However, these simple operators could not be implemented until a series
ol representational and algorithmic questions were solved. The fundamental
representatienal issues centered on the structural properties of the defining C-
functions. By deriving their domains, and by proving theorems about the topology
of these domains, it was then possible to address the intersection problem for
high-dimensional configuration spzaces. By solving these open problems, developing
representations for the C-functiens and their domains, and designing decomposition
algorithms in C-Space, it became possible to represent the constraints on motion
“completely,” and to exploit the complete representatior in implementing a planning
algorithm. Next, we presented new theoretical results on the C-Voronoi diagram.
By showing that for every connccted chain of Veronoi manifolds, there cxists
an cquivalent chain of intersection manifolds of level C-surfaces, a theoretical
completeness result for planning along the intersection manifolds was obtained.
This result is also of interest since while the charts for the Voronoi manifolds are as
yet unknown, charts for the irtersection manifolds are straightforward (given our
representational fraraework). Thus it is possible, in principle, to devise a planning

algorithmn with all the advantages of a planner along the CVD.

There is much work to be done. Ultimately, decomposition algorithms such as
thosec we present in chapier 5 will becomne increasingly important in partitioniag
C-Space into regions where the set of applicable (or alternatively, relevant)
constrainis is invariant (sce also Schwartz and Sharir (1981)). The representations
and algorithms we havz developed may make other geometric pianning probiems--
such as fine-motion, and planning with uncertainty—more feasible, and sheuld now
be applied iz these applications. The find-path algorithm can be easily extended
to robot manipulaters with six degrees of freedom in which transiations can be
dezoupled from rotations. This class includes Cartesian manipulators (for example,
the IBM RS/1). The adaptation of this work to a production environment presents

interesting engincering challenges.

In principle, the 6DOF represeantations can be extenu. .o revolute-joint, linked
arms with six degrees of freedom. However, the C-Space of the linked-arm prohlem

is the six dimensional torus,

218

Sty .- x8' (to6)

which has a very different structure from 83 X SO(3). It is our hope chat this thesis

can present a methodology for formulating the geometric constraints for arbitrary

i configuration spaces, and that a similar structure will be found for constraints on

the 6-torus.

Our planning algorithm is complete (at a resolution), in that the representation
employed is complete, and in that the searck is guaranieed to find a path if one
exists at that resolution. However, since it is a search algorithm, we cannot provide a
polyncmial time bound. Qur motivation has been to address the completeness issue
first, by resolving [undamental representational guestions; now, one of the most -
important remaining tasks is to develop complete, polynomial-tiine ailgorithms which
can actually be implemented. We do not belicve that the worst-case exponential
behavior of the 6DOF planner is inherent in the representation, and conjecture

that a poiynomiai-iime aigoriithm which plans pachs along interseciion mmanifoids

can be devised. Indeed, the theoretical results on the CVD are suggestive that the
limiting complexity of the approach may be the complexity of constructing the
CVD or an cquivalent chain of intersection manifolds. More rescarch is needed on
the topclogy of the CVD. A fast planning system might determine what constraints
construct the CVD, and, using these constraints, construct a chain of interseclion
manifolds which could attair the goal. The first step in this effort would bound the

complexity of the CVD and the intersection chains.

R : e " m s N N vy vmterataran
N W Ny N T e Y L M N Y I N A TN T I AT A A LA A A, PN P N G

Appendix I

Details of the Intersection Problem, and Related Probleme

This appendix contains the detailed equations from chapter 4, which are
relegated to an appendix because of their excessive length. Some definition of terms
is repeated, so that the interested reader will not have to flip back and forth ico

much.

L1. Intersecting Two C-surfaces in R? x 51
By applying trigonometric reductions we can express type (a) and (b) constraints
as follows (only (al) and (b1) are shown):

Y - b M
cos{7;jSy + Csin{hi)y —sin(7) Sz 1 Ceos()

+ sin(x; — 7,))16511S = llas]| cos(N; — n;)
— C cos{X; = 7;)]165| (al)

sin(¢,)y + cos(d;)x — |le;|| sin(é; — n:)S
— Clla;|| cos(é; — n:) ~ [|b,]] cos(é; — ;) (b1)

Where
C = cos0 and S == sin 0.

Now, we can consider a pair of these cquations as a system in four variables,

(z,4,C,S), and proceed to solve (al) and (b2), (b1) and (b2), and (al) and (bl) for

220

P ..-.;-n.-.---.----..n---unx-l‘.l‘-%

e —

z and y. For example, the intersection of two type (2) surfaces, (al) and (a2) is a

curve
2 1
p:r,”nr,,z R X S

where 141 N rqs C S' denotes the intersected applicability constraints for (al) and
(a2). Although the solutions are in the variables C and S, we can use C = cos@ =

cost and S == sin @ = sinr to generate the curve of intersection in N? X S'.

After much simplification, the parametric solutions for the intersection curves
for type (a) and (b) constraints in ®2 X S' are as follows:
The intersection of two type (a) Surfaces: {a1) N(a2)
po(?‘) =7,
pa(r) = D(~(S(lalllcos(n! + 3 = N + llolll cos(nf = > = \)
— {lasll cos(n] + i = Ni) — llail| cos(=X{ + mi — Ni)
+ C(2cos(Af + i —)lIbsll — 2 cos(N{ + N —;)l15;11)
+ C(llaf|| sin(n{ + i = N;) — llaf sin(n — X — N)
B P 1 o A U WU YT U | D | I N AN TPV W |
“U«;“ bll)\/\‘ T 1 /\1) T “u,‘“ Dlll\ I\' T I\;,l
+C2{zsin(N] + 2 — VIl — 2sin(\ + X —)5l
+(—sin(0 + N — ;) = sin(A{ = X = ;))llb5]

+ (s 4 N — 5] ~ sin(\ =X + L)Ib;1)/ 2)»

py(r) = i-’(—(b‘(i!a,‘ll sin(n] + N\ — X)) = {lag] sin(n{ — X —)
— il sin(\{ +m; = N) + [iogl sin(=X{ + 7 = \i)
+ C{2sin(N + Xy ~)65 = 2sin(h] + Ny — 7)ifbsil)
+ C{~{laillcos(n; + X; = X} ~ lla[| cos{n{ — Xi = \))
+ f{ail] cosN; 4 1 =) + [laillcos(—N + ni = \i))
+ G2 eos(N + hi — 16l — 2eos(N] + X — 4 j)llb5]1)
+ (cos(A] + X = 77) — cos(N{ — N — ;)16]

+{oos(M =i+ 1) = sos(+ X = 1)ls11/2),

where
]
D = esc(\] = X;).
221
Bu\wm AR W MR W U R A P Kb Rl PR Fubi M U AN A LA P S Bs " TR P R P P> P W A Fan AR PR A Wt M AT R TR T P P T B e

D
PN _-:J'\.'

The Interscction of type (a) and (b) Surfaces: (al)N(b2)

p) =T,
pefr) = F(S(2Cllafl| cos(g} — 1! = \)

+ [l cos(} + Xi = 77) = bl cos(+ i =)
+ 1l cos(f — Xi = 73) + bl cos(f = X + 1))
+ llalllsin(g} — 7! + %) — 2C|alll sin(8} — nf =)
+ llafllsind] — ! = 2) = ol sin(g + 7 = X3
— |lasl| sin(qﬁ} ~ s+ N;)
+ C(1Ibfl sin(8] + X = 1) = Il sin(8] + X — ;)
~ [l sing X — 12) = Iyl sin(85 = s + 1)),

py(r) = ~P(S(Cllofllsin(¢} - n! = 2)
— [l sin(@} + X = 73) + o sinspf + s =)
+ (6l sin(} ~ ¢ ~) — Il sin(gf = i +)
+ llalllcos(] - n{ +X) + 2C7|afll cos(8] — ! = N
— llaf]l cos(@} — n{ — N} — llail| cos(é] + 5 — Ni)
= lla:ll cos(@; — 17 + Ns)
+ O(bfllcos(8] + > —13) = 15l cos(8] + X =)
+ [l os(8) = Xi =) = sl cos(8) =X + 1)),

where
1

P = G338 —2Cemigl —2)
(‘.SC(O - ¢; +)\;)
] .

! 'a.l.,'
A ‘ B

222 (AN

L [

?

The Intersection of two type (b) Surfaces: {61)N(b2) '-"::‘.:.Qg'

1 P
Wiieic.

Po(") =r, H
pa(r) = E{(S(llal| cos(} + &; — n}) — ||al| cos(#} + ¢; — n:) | ity
— lla/ll cos(@} — &5 — nf) + lail| cos(8} — 6; +75)) R
+ C(=|lali sin(¢] + &; — nf) + llaili sin (8] + 5 — m)
+ [lalli sin(g} — ¢; — 1) + llaglf sin(ef — 45 + n4)) ,
— |15}l sin(} + &5 — 12) + l|b;1 sin(8] + 65 — ;) Sl
+||blisin() — é; — v5) + |lbjll sin(e; — ¢, + 'r;-))/Z), o

py(r) = E((S(”afli sin(¢; + ¢; — n{) — l|aill sin($] + ¢ — m) . R
+ llalll sin($] — &7~ nl) + llacl|sin(# — 8; +:)) R
+ G(llall cos(8; + &5 — n{) = llasll cos(é; + #; —) e
+ llafl| cos(#; — #; ~ ni) = lladl| cos(8; — 8; +ms)) - RERS
+ 116}l cos(#] + & = ;) = lIb;ll cos(g} + & = %) -

118l cos(} — 65— 7)) — gl cos(e} &5 + 1,))/2), pos

E = cac(¢; — ;). Ak

223

PR)

1.2. itelated Problems in ®2 X S!

1.2.1. Techniques for Moving Along C-Surfaces in %2 X S!

In this section we present techniques for moving along a C-Surface. We could
imagine using these mcthods to move to the nearest “edge” (C-Surface intersection),
for cxample. A level C-Surfacc is defined via a function f(z,y, #) = k for k constant.
[is exactly of form (al) or (b1) (above), and the level surface in % x S! is all

points
L={Xe® Xr/|f(X)=k},
where r; C S1 is the 8 applicability range for f.
Decfine a hypcrplane in ®2 x S! as the set
P={XeR XS |X H=-h},

where H = (hy, ha, h3).

We intersect the level surface L with the hyperplane P to obtain the intersection

curve:
po(t) =r,
pelt) = G(S(cos(n)(~ht — ha) + hysin(n —)il
+ Csin(X\;)(—hst — hq) — halla;]| cos(\; ~ 7:)
~ Chzcas(hi =)lIbjl| = hek),
py(t) = ~Gx(S(sin(x)(hst -+ ha) + hysin(hi — ;)|16511)
+ C cos(\;)(=hst — ha) — hylla;]| cos(X; — n;)
~ Chycos(N; —)61 — h,k), (F N(a1))
where
1

Gr = (hgsin(Xg) + hy cos(N\))S + (h sinﬁ;) — ha cos(\,))C”

221

W_’-p ;3
oA

e o e v L L M AL AN A AR TUIE LN T A A R TG U TR P N TS AN AR PR S S R A N R T)'_ﬂfj\r:\:ﬁ?\-l\w};\‘ ‘_A-F}?}:‘}‘}}:":l'? n’\? !

‘-'pﬂ(t) =7,
ps(t) = ~Gusin($;)(hat + ha) + hollai]|sin(d; — 7:)S
| + Chyja;]| cos(¢; — n;)
| + hbyl cos(@; ~ 1) + hak),
% py(t) = CZ(COS(‘ﬁj)(hat + ha) + hyllag| sin(¢; — n:)S
+ Chyl|ai]| cos(¢; — ni)
+ hallbjl cos(; —) + huk), (PN

where

Gy = 1
2™ hysin(4;) — hacos(é;)’

1.2.2. Characterizing Clearance to a C-Surface

It would be very useful to characterize the minimum clearance to a C-surface.

We would like to answer the question:

e For a point byy € N%, at what orientation 1s by closest to a C-surface, and
what 15 mintmum dirccted clearance vector at thal orientation?

Using Lagrange multipliers, we can minimize 2 function f(z,y,0) subject to a

constraint g(z,y,8) = 0 by constructing the auxiliary function

H(z,y,0,8) = f(z,y,0) — £g(x,y, 0)

and solving the partial derivatives

%fy{ —0 @)
o
7, 0

In our case, g will define a C-surface, for example, a type (a) surface:

g(z,y,9) = sin(0 +)y + cos(? + N)z — ||b;]) cos(F + X — ;) — lla:]| cos(h; — i)

225

1
""E e

‘ol Wy o/ Y I Y 'y 3] RS LA Ml P I ¥
PO NNS T DN NI DA P A ST

and f will be a distance Tunction. Now, the rotational dimensions cannot be ireated
uniformly in establishing a metric, so we will define distance in Euclidean space,

Minimizing the squarc of the translational distance suffices for our purposes. Hence,

f(Z, Y, 9) = (z - b1)2 + (y = bv)z'
Differentiating IT gives us the following equations:

 oH

5 2(c — bz) — Lcos(0 + ;) (1)

%—? = 2(y — by) — Lsin(6 + X;) (2)
r

a'; = —£(cos(0 + \;)y — sin(0 + X))z + ||b;]| sin(0 + N; — 7)) (3)

oH

FTha (—sin(0 + N)y — cos(d + \)z + ||b;]f cos(0 -+ X; = ;)

+ Jla] cosln: — M) (1)

Solving these equations for z, y, ¢, and £ is not trivial. However, the following

observations make it easier. First of all, we note that solving

oH
55 =10 (5)

is equivalent to solving (4) as long as £ = 0 is not 2 solution. We next solve (1) and
(2) for £cos(0 + X;) and £sin(0 +);) and substititute this value in to (3) and (5).
(5) then becorues a linear equation in z and y while (3) is quadratic in z and y and
lincar in £. Our rewriting of (4) into (5) has thus climinated € from {5), and we can

solve for z in terwns of y:

—2¢7 + (2]|b,{I sin(y;) + 2by)y — 25 4 (2]]b;|] cos(y;) + 2b,)z

+ £]]a;|] cos(ng — Ni) - 2by]|b;1} sin(y;) - 2b4[[b;]| cos(y;) (3)
(26, — 21l cos(1;))y + (2]l sin(1;) — 26,)s
- 2b-:i|bj|| Si“(')’j) + 2bv”bj” cos(-)j) (5)

We nced onc additional constraint: this is obtained by observing thet
sin(0 4+ X\;)% 4 cos(0 -+ X;)? == 1 (6)

Since the trigonometric terms can be expressed in z, y, and ¢, we can obtain £2 in

terms of = and . (3), (5), and (6) then result in a quartic in = with the roots:

226

X
XAy

‘

w % 'i(’,.'\
:.‘“.j
K,

) K|

ik

"-

s

z = Gl(Zby”bjliz sin(27;) + 2b.{|b;]? cos(2v;)
— (265 + 263)1b5li + 201b,11°) costys) + 2bel6;11*

£ Gof ol sl — X +)

+ el costr — he =) ~ 2l ot — 1)),

where
G, = 1
2(2by|lbjli sin(;) + 2b.|[bj|| cos(;) — |1b;1|2 — b2 — bg)
and
Gy = \/—2b,||b;| sin(;) — 2b.||b;]| cos(+;) + |[6;]|% + b2 + b2.

Given z, y is found from (5) :

A Nginlov Y L Yo — A Bh M ainl~)a .
(HV‘Ju"m\ i7) = “yi* l-zh'",r!l-“"-"- 70+ byl

11651 cos(;) = b2

y:::

£ can be found from (3) as a lincar function of = and y. To determine ¢, we calculate

sin{0 + X\;) and cos(@ + X;) from

sin(f + ;) == ?@L;_'id

cos(f + X\;) = ZE-;—E

and use a two argument arctangent function Atan2 : R% — S! to determine 8 +).
The 0 value must be checked against the applicability constraints for surface g;
if it falls outside the range, then endpoints will yicld the minimum clearance.
Naturally, it is possible that for certain orientations, (bz, by, 0) will lie on or inside ft"f:::‘c'; A
the C-surface. These cases may be disambiguated by the sign of g{., by, 0). Finally,
given the closest point (at some oiieatation 6) on the C-Surface, the minimum ,‘ \“:

clearance is simply the vector X

(:c, y)— (b_-,, by)'

207 . 2

The Minimum Clearance to a type (b) C-surface

To find the minimum clearance to a type (b) surface and the oricnlation at.
which the clearance occurs, we let g be a type (b) constraint {equation (b1)) and

solve the system of partia! derivatives of H.

%_’:;’. = 2(z — b,) — £ cos(4;) (1)
%’5 = 2(y — by) — £sin(4;) (2
%% = —tl|ag]|sin(0 — &; + 73) (3)
%2[— = —g(z,4,6) ()

The solution is considerably casier because the form of the constraint surface is
less complicated. Since 0H /3! = —¢, 6 may be found in terms of = and y using an
arccosine. Substituting this value of # into (3) yiclds a quadratic equation in z, v,

and £, which when solved with (1) and (2) for the following roots:

z = ||bj]| cos(¢;) cos(d; — ;)

— by cos(@;) sin(@;) — bs cos($;)” ~ llas| cas(4;) + bz,
y = ||b;|| sin(é;) cos(¢; -~ ;)

— (b cos(¢j) =+ Jlag]l) sin(:,bj) + by cos(¢j)2,
£ = 2||bj|| cos(d; — v;) — 2b, sin{¢;) — 2b; cos(@;) — 2||a|.

228

A A AU A A A A A A A Ay ALY L W T e e S N I e

P e
[T

5N\

Appendix 1l

The Connectivity of Configuration Space

O.1. A Review of Elementary Ilomotopy Theory

In this appendix we review some elementary homotopy theory, and address
the connectivity of configuration space. See Hocking and Young (1961) for a more

extensive review, and Donald (1983a) for an analysis of the relation between

channels and homotopic equivalence classes. Let I' denote the unit interval. A

parameterized family of mappings from a space X into a space Y is a continuous
function h : X X I' = Y. Consider the mappings f and ¢ from X to Y: we say
that h is & homotopy between f and g if for each point z in X,

h{z,0) = f(z) and h(z, 1) = g(z).

Intuitively the existence of h implies that f can be continuously deformed into g

without leaving Y.

The homotopy relation between mappings from X into Y is an equivalence
relation on the function space Y'Y, llence the homotopy relation partitions YX
into disjoint equivalence classes, which are called homotopy classes. We write the
homotopy relation as f =~ g. These homotopy classes capture our intuitive notion
of classes of paths. The homotopy classes of Y can be shown to be precisely the

arcwise-connected components of YX (Iocking and Young (1961)).

229

A R L TG L L T T N R PLCLRRTREE ELRARAN LS TR TRERI SRt
. Y . R o A A S S L A . P
. AM.MW‘MK :3\'.)? b\"hk w2 il A A A Tt !."-‘;._n A O AT O AR TS

To take a concrete example, consider configuration space for the two-dimensional
mover's problem to be the product space of the 2-dimensional Fuclidcan plane)?
and the onc-dimensional sphere S! to obtain R% X S, and denote the configuration
obstacles as CO C R* X S'. Now two paths f and g in the same cquivalence class

must belong to a parameterized family of mappings such that:

E:XxI' R x S'-co,

and h(z,0) = f(z), h(z,1) = g(z) as before.

Now, let y be a point in Y. The y neighborhood of cyclic paths in Y, C(Y, y)
is the collection of all continueus mappings f : I! —+ Y such that f(0)= f(i) =y,
i.c., the sct of all continuous curves that begin and end at y. If f and ¢ are curves
in C(Y,y), we say that f is homeotopic to g module y if there exists a homotopy

h:I' X I' =Y continuously deforming f into ¢ without leaving Y.

Clearly, homotopy modulo y is an equivalence relation, and decomposes C(Y, y)
into disjoint equivalence classes which are exactly the arcwise-connected components
of C(Y",y). The set of thesc equivalence classes is termed the first homotopy group,
or fundamental group of Y. We say a path-connccted space Y is stimply-connected
if the fundamental homotopy group for X is the trivial group of one element
(for some, and hence for all y in Y). See also appendix U, section “Topological

Constiaiirts.”
I1.2. The Connectivity of Configuration Space

The configuration space ®? X S! (for the two-dimensional mover’s problem)
is not simply-connected, since S! is not simply-connected. The function space
(R* X S contains scveral homotopy classes. (R* X §')¥ may be envisioned as
a cylinder on which there are clearly two classes of paths: those that bound 2
2-dimensional region and are contractable to a point, and those that go around the

cylinder,

The configuration space R* X SO(3) is not simply connected, because SO(3)

is not simply connccted. To see this consider the following: geometrically, SO(3)

230

1s homeomorphiz to P, the 3-sphere with antipodal points identified. As is well

known (sce Massey (1967), p. 166) the fundamental group for P" is cyclic of order

2, and hence P" is not simply connected.

General configuration spaces (other than that for the classical Mover’s problem)
are not always simply-connected. For example, the C-Space for a manipulator with

six revolute joints is the 6-torus, S! X §! X ... X 5! (to 6).

Let 1T be the half-open interval [—m,). It can be used to approximate S',
if we are willing to tolerate singularities in the representation. It is instructive to
generate a confliguration space which is simply-connected. Since this is not possible
for the generai product space R™ X S! we will instead consider the product space of
3" and I1. Thus for the two-dimensional mover’s problem we consider the product

space

C =R xII.

For a manipulator with »1 revolute joints, the C-Space may be approximated

by TI™, where

™ =T XOX...XI (tom)

)

The thiee dimcnsional retation group SO(3) can be approximated by a

hemnisphere of the 3.spkere (which is simply connected), or by 114 IT™ is
homeomorphic to the interior of the m-cube. This aew product space C is simply
a restricted configuration space where the pianc is not allowed to spin around
wildly. The approximation of 5O(3) by a hemisphere of S*, incidentally, is closely
related to the cruployment of unit quaternions to represent roiations. The space of
unit quaternions is precisely §%; the two quaternions ¢ and —g construct the same
rotiation, although they represent antipodal points on $*. When all aniipodal points
g and -—q are identified, the projective 3-sphere, P? is obtained. P is isomorphic
to SO(3). 1L is of interest that Luler angle space, @* (see chapter 2) is essentialy

an approximation of SO(3) by R? {inod 27}, which is isomorphic to the 3-torus,

231

Lo
Ay

o I
k” -
DA RE <

', s

;n‘\" N
2

CTLTLLRT
4 -
{j a = ‘i 6.

£

»

when equivalent rotations are identified. If cquivalent rotations arc not lentified,
then Q% is isomorphic to R?. While the approximation of SO(3) by ¥ vields a
simply-connected configuration space, from the point of view of an automated
planner it has the undesirable cffect of introducing an infinite number of goals in
the rotational dimensions of configuration space, for every single goal in the space
of Buclidean motions. I'or this reason the approximation provided by the 3-torus

may be considered preferabie.

" PR T S L. O W S P N BRI e,
5

1

LA e ¥
AT A L WA S R VAN U Y R W O et p AN S e 4 N e e S AR

w

Appendix 1

Intcgrating Local and Global Algorithms for the Find-Path Problem

In Donald (1983a), we have discussed the integration of a global channel
algorithin with a local C(-space algerithm te form a planning system for the
find-path problem in %% X S!. How can a three dimcensicnal global, or channel
algorithm be coupled with the planning system in 2% X §O(3) described in previous
chapters? Mcre gencrally, what are the fundamental issucs in integrating local and
global geometric planning algorithms? In particular,

(i) How can a global algorithm suggest paths, or equivalence classes of paihs to a
local algorithm?

(i) How can the reievant geometric constraints be identified and exploited by
the local algorithm? Conversely, how can irrelevant geometric coastraints be
clfectively ignored?

(iit) Hlow can global topological constraints, such as those arising from analysis
of homotopy clusses and fundamental groups, be propagated ento the (local)
geometric structure examined by the local algorithm?

In general, the design of a global algorithm will depend on the geometric
constraints exploited by the companion local algorithm with which it wiil be
coupled. Hence when we consider extending the channel algorithm of Douald
(1983a) to the three dimensional find-path domzin, we must specify what “burget.”
local algorithm to usc. A natural cavdidate is vhe focat alporithm for find-path in

N3 X SO(3), which wr dusaibe in chapters 1-2.

231

Path Suggestion. A problem which must be solved in any local/global find-
path integration is how a global path may be suggested to a local algorithm. In
two dimensions this was accomplished by segmenting the find-path problem into
a sequence of sub-probicms. The Suggestor sirategy (chapter 2) is designed with
this in mind. The verified points along the suggested pati. become planning islands
in configuration space. The job of the local algorithm is then to connect up the

planning islands and find a continuous path to the goal.

Choosing Subgoals in Rotation Space. In a three-dimensional rotation spuc:,
the problem of selecting good rotational subgoals becomes more difficuls. Mazh
of the path-planning literature has been guilty of overlooking this difliculty. Sach
subgoals can be used in path-suggestion as we have described above. Even when

| the companion local algorithm is complete, a strategy for choosing guod rotaticnal

subgoals is desirable, since it would allew the algorithm to converge froter.

We have derived experimental strategies which consider alignme=ts of the rohot
polyhedra with the faces and edges of obstacies. Livery polyhedron’s 'uuum‘x.u_}
contains alignable generators (faces and cdges) which have an orientation, and
non-alignable generators (vertices) which have no or icntation. Two geiwratols are
said to be aligned when they are paraliel, and the rotations in wkich thev are
aligned form connccted alignment regions in SO(3). For example, tvu cubes ar:
aligned when two faces are parallel, or an edge and a face are parallel. The chanre,
construction is useful for identifying the obstacle sur{aces which bound the proposed
channel (in real space). Call this set of iaces Fc. Let 7y denote vhe faces of the

robot. The alignment rogions can be considered {or the generator pairs

G Atign = (Tn X 7&)[)(% X é’3')<)U(<"3'fu X 7x)-

We »r2 caly interested in applicable alignments, that is, an alignment of two
(or more) generators where the generators can be brought into contact through
some transtational metion (this is our definition of applicability: see chapter
3). Applicability may be detcrinined by cxamining the anplicability constraiat

fuonctions (ACKs) introduced in chapter 3. Furthermore, in chapter 5, we showed

234

i~ um e cmARTRANASNALT WY UN AT WAKTEA A AT W WL AN

that alignments of cdges and faces occurred exactly at the boundary of the

applicability regions for C-functions.

Every C-function is 2 partial function f; on the configuratiorn space R* X SO(3),
whose domain is R* X 4; for 4; C SO(3). The sct of alignment regions is obtained

by the union of the boundarics of these applicability regions

Eatign = J 04;
1 2

tor cvery T-functior f;. Every point in Rpgn lies in the kerncl of some ACF
gij 1 SOB) - R for a C-fuacction f;. In chapler 4 we shewed how to derive charts

{or these bourdaries ond their intersection manifolds.

In most lind-path prob!éms, the alignment regions in Raign are complete as
subgoals in rolation space~—i.c., no otner rotational subguals necd be considered in
order to find a snlution path (if cne exista). This makes a certaiv intuitive sense:
cne might try aligning a large pox with a natrow dour-frame in order Lo syucese
it throuzh.! However, in general there exist pathological cases in which this is not
true (imagins a ropot which iooked like a polyhedral sea urcliir), and the set of
alignments s not cospiete as a set of subgoals. Puctheimore, it is unsatisfying that
tic alignment analysis exploils strong constrainte in the polyhedral domain of the
classical Movers’ preblem, and Joes not appear to generalize well Lo linked-arm

problems.

We believe that it may be pessible to overconie thie prablem of “star-shaped” robots
by cunsideiing additional alignment regions obtained from faces and edges of the
convex hull of such ohjects. Such ar algoriilan would have to deal similarly with
“stur-shoped” obstacles. Bven these additional alignneuts may prove incomplete;

howeves, they may f.ave heuristic value.

The problem of how & global algorithin can 1afer goud rotaticnal subgoals from

the stracture of real-wpace 1z one of the most kdsrestieg open problems in spatial
planning. We conjecture that an aaswer may e in the structure of the boundarics

PWe are not making any clains aboob human spatial veasoning bere,

235

oMy ot ~ mMmy e s mtmte= - -~ W ~a R " 1" R =g N
AN BT E NN L A AL (TN TG NG AL TR P PR R P T S N T A ok ::\':' i

N U N W S i S VA ¥

Figure 11.1. Pathological example showinz a robot A whose alignment regions do not include 2
rotation which helps get through the light passage.

of the applicability regions in SO(3). The algorithms we provide in chapter 5 for
obtaining the applicability set decomposition may prove useful in computing this
structure. Such a planner might slide along the intersections of ACF boundaries

. .
on the intergections

or ievei ACFs in rotaiion space,? much as our planner s
of level C-surfaces in configuration space. The advantage of such an approach lies
in reducing the (infinite) search for rotational subgoals to a finite combinatorial

search along the ACF boundaries.

Topological Constraints. Ideally, the global strategy should enforce the
path-class criterion® for each sub-problem: no straight-line approximation for a
subproblem may cross more than one equivalence class of paths. We begin by defining
what a straight-linc approximation means in 3 X SO(3). This requires some way of
forming “linear combinations” of rotations. The definition of “linear combinations”

2Leovel ACFs are defined in scetion 3011,
3Sce and appendix 11

i

ety
AN ‘l‘;‘tl':' ¥

Y

W “i".“ ‘ .

in SO(3) relates to a definition of convexity for R} X SO{3). In particular, we wish
to determine whether C-3pace obstacles are convex. For if C-space obstacles are
convex, then we could rivially bound the number of intersecticns any straight-line
trajectory can make with any one obstacle. We present a conjecture that the
C-space obstacles are non-convex. Finally, we discuss basic topological notions for

formalizing our analysis of equivalence classes of paths.

We require some way of forming “lincar combinations” of rotations. The
requisite algebraic structure is much like a module (over the reals), except that
the group operation cannot be commutative.!. The group operation is composition
of rotations. Let R(71,0) denote rotation about the three dimensional vector 7t by

angle 6. Scalar multiplication by o € ® may be defined by

aR{#,0) = R(#, ob).

Py subsiiiniing the {non-commuiaiive) composition of rotations for the group

operation +, wc obtain a natural definition for linear combinations,

aR(#,8)+ (1 — a)R(R,8') = R(7, ab)R(7', (1 — a)0") (111.1)

for 0 < a < 1. R, of course, may be conveniently expressed by a unit quaternion.

Suppose @” is a three-dimensional parameter space for SO(3)—that is, the
domain of a chart for rotation space. For example, @* might be the space of Euler
angles (see chapter 2). It is possible to define lincar combinations in the parameter
space R® X Q. This scemns unsatisfactory, since it makes the definition of linear
combination—and more disturbingly, of conve.iity—dependent upon the chosen
parameterization for SO(3). Observe that definition (111.1) for linear combinations

is invariant tor all parameterizations.

Open Question: Under a definition of convexity invariant for all parameteriza-

tions, show whether or not the C-space obstacles in ®* X SO(3) (and R% X S1)

1Recall that a module is defined as follows: 1T 12 is a commutative ring with identity, then M
is & module over B 0F (M, 4) is a commulative group, and scalar muitiplication (7, M) e+ rM of
elemen v M in M by r in I is associative and distributive (over 4), and if 1 gM = M

¥ ""!‘_..';
._g"_“g:f‘.’
; g‘#&'g
Nt

oo

-
<

[)

e
(BB
Tty

i

TURIT VOB b B
AT 3

arc convex. Conjecture: We conjecture that C-space obstacles are non-convex.
When %2 X S! is approximated by ®2 X [—=,7) and embedded in 23, the cor-
responding C-space obstacles are non-convex using Euclidcan lincar combina-
.tions. Furthermore, in both 82 X S' and R* 3 SO(3), each obstacle manifold
.is the intersection of a finite number of half-hyperspaces of R* X S0(3).
Each hall-hyperspace is in turn defined via a real-valued partial function
J 3 X SO(3) - R. Using partial functions, arbitrary non-convex manifolds
can be constructed. Showing that the obstacle manifolds could be represented
by means of smooth, total functions would suggest convexity. Qur analysis
suggests that these functions must be partial, which in turn leads to the

conjecture that the obstacle mmanifolds are non-convex. g

The homotopy relation (sce appendix II) partitions the function space of paths
into equivalence classes. The image of one such equivalence class [f] is the region
in C-space covered by the union of all the path images in [f]. The equivalence
cl2gses are determined both by the structure of the underiying C-space , and
by the C-space obstacles. Intuitively, the fundamental group® in a space Y is a
topological invariant corresponding to the set of equivalence classes of paths in
Y. The group operation corresponds to path composition (“pasting”), and for two
paths f, g: I' = Y where f(1) = ¢(0),

{ rron

- J\&v), iG € l("
g(2t —1), for t € [3,1].

We think of f % g as the path whose first half is f and whose second half is g.

The pasting operation * is well defined on path homotopy classes:

1%0e) =1f * g,

and exhibits groupoid properties. When an obstacle makes a hole in frec-space, it

augments the fundamental group for the space by adding an infinite (cyclic) number

5Sce appendix il for a review of clementary homotopy theory and a formal definition of the
fundamental group.

238

(s5)

Figurc 1.2, Pasting together of paths f and g. Some paths in the homotopic equivalence classes
{f] and [g) are also shown.

of equivalence classes. (For example, by puncturing the plane at the origin O, we
obtain the classes of paths (1) not looping around O, (2) looping around O once,
.++,(n) looping n — 1 times around O, ...). The topology of the underlying C-space
may be predetermined (see appendix II), but each new find-path environment
generates different path homotopy classes. We wish to infer the equivalence classes
in the fundamental group by their generators, i.e., the C-space obstacles. Since the
C-space obstacles can be constructed from the rcal-space obstacles, we are actually

attempting to compute path classes in C-space from the structure of rcal-space.

In general, if free-space is connected, the image in C-space of even a single class
of paths can cover all of free-space. However, we can impose a stronger condition
which subsumes the path-class criterion. Let p be an injection of J1 into C-space
, which will represent some approximation of a solution path for a subproblem E.

We wish to know whether the image of p can be expressed as the union of two

239

I8

R0

4,
*

X

)
)

{
|
{

% |

Figure I1.3. The planc with a puncture (or obstacle) at the origin, showing paths f and g fiom
zp to x;. f and g are not homotopically cquivalent, and henee in different equivalence classes.

sets of points, those lying in the image of one equivalence class of paths, and those
lying in C-space obstacles bounding that image. In chapter 4, we showed how to
inter cct trajectories with C-surfaces in ®2 X S! and R3 X SO(3). We can intersect
p(J') with all C-surfaces, and determine the interseciion points. Thesc intersection
points indicate where it penctrates C-space obstacles, and are determined from its

zero-crossings from free-space to forbidden space.

Clatm: That the image of p contains either no region or one connected region
lying within any C-space obstacles is a sufficicnt (but not a necessary) condition

satisfying the path-class criterion for sub-problems.

Constraint Relevance. Another issue concerns how a global algorithm can
characterize the relevant constraints for a local algorithm, and if necessary, impose
additional, artificial constraints on the problem so that irrelevant constraints in

the initial domain will be ignored. Because of the difficulties in maximizing channel

240

breadth in threc dimensional channel construction, the artificial faces introduced
by the current implementation may prove too restrictive, especially if the robot is
large or non-convex. However, the channel construction is useful for identilying the
obstacle surfaces which bound the proposed ci....'nel (in real space). Call this set of
faces J¢. The C-surfaces generated by these faces may be exploited by the sliding
and intersection experts (sce chapter 2). Let #; denote the faces of the robot. These

preferred C-surfaces are identified with their generator pairs, namely

Slide = (TR X vcrt(}'K)) U(é.’ﬁg X 33"}() U(vert(fﬁg) X ?}().

The identification of good C-surfaces to slide along addresses a central issue in
local/global integration. At present, the sliding and intersection experts exploit only
jocal geometric structure and planning history. The channel algorithm introduces
a global criterion for selecting which C-surfaces to slide along, and for constructing
interscction manifolds. The set of C-surfaces Slide specifies an iraplicit volume in
configuration space which is closely related to the channel volume (in C-space).
This volume is obtained by extending the hyperplanes containing the C-surfaces
past the obstacle boundaries until they intersect. Furthermore, Slide lies on the
Loundary of the image of the hypothesized equivalence class of paths. By choosing
these interior surfaces as candidates for the sliding and intersection experts, global
advice on constraint relevance is provided to the local C-space algorithm by the

global channel algorithm.

PR ST N .n‘-\"-F.-\"".n"'-"\(“vl"--'.!--\h‘)(‘""

Appendix IV

A Listing of Macsyma Code

In this appendix, we provide a listing of the Macsyma code to produce optimized
omputing the coellicient functions of the canonical linecar
forms and trigonometric quadratic forms of the type (a), (b), and (c) C-functions,
and type (a) and (b) ACF clauses for R X SO(3). Using these forms, the
intersection manifolds, type (c) ACFs, and disambiguating applicability constraints

arc constructed in the manner described in the text.

We also list (in Macsyma) the resulting combined forms for the C-functions and

ACFs. Note that the type (c) C-funclion is “over a page long.”

Rotations are specified by means of the Macsyma functions RotateVector(z :
vector) and Transform(z : plane or wvector). Rotations arc implermented using
the Euler angles. However, by changing these two functions, any representation
for rotations—such as quaiernions, spherical angles, or wrist angles for a cartesian
manipulator-may be employed. This corresponds to reparameterizing SO(3), and
re-ults in different charts for the level C-surfaces, interscction manifolds, and ACF

manifolds.

242

7* Display and Grind function. 1T OPIIMIZE_FLAG 15 TPUE then
we actually store the OPTIMIZED expression °/

print{"Setting Grind to TRUE...")$
Grind:Truel

Optimize_Fiag: TRUES

A OPIMPREFIX: % ./

Display_and_Grind(exp):=
@iock{{1nbel],
i1 OPTIMIZE_FLAG THEN
(print(EXP),
Prini(” Optimizing..."),
Exp: Optimize(Exp)),
Tabel:Ldisp(exp),
if Gring then
(print(” Ground, becomes:
“. Vabel[1].7 : "),
grind(exp)).
print(”™).
labe1[11)8

/* Ytility function. Is the expression EXP free of all the VARS (a 14st?) */

Free _Of_Vurg(vars, €xp) :=
block([freedom],
freedom:true,
{for var in Vars wunless freeo m = false do
(if Not FreeOf(var, Exp) than freedom: false)),

if Not fresdom then

Print("[Exp contains Major Variables. Recursivaly Analyze...}"),
fresdom)$ |

/* here we define Cancnical Linear Form to be simply the
expression of the constraint as a Yinepr function
in X, ¥, and 2 %/

Canonical_linear variables: [X, v, Z]$

)

Canonical_Yinsar_form(Exp) :=
IsolateN(Exp, Canonical_linear_variables)$.

243

/® Bruce Donalo (BRDBOZ) analyza hairy expressions =v- MACSVMR -~
e Hittle bit ®/

/* Andlyze dilinear Forms : given the “chief vars™ in RATVARS,
generate intermediate lavels for &) the coaxfficients
of these vars and ceturn the "simplified”™ bilinesr fora.
Recursively Calls ANALY2L BILINEAR_FORM So that the intermediate
Tabels sre truly “constants™ relptive t¢ the RatVars */

/¢ typically, ratvars:[a,y.z,psi.theta phi] “7/

7* Js0YsteW works Vike ISOLATE put for N variables in a 1ist,
en g bilinesr {orm */ .

Isotatek(Exp, Wvars) :e

tlock([Save_Ratvars, Iform],

Save_ratVars: ratvars, "

Ratvars: Wvars.

Ifarm: Anslyze Bilinear_form(Exp),
Retvars: Save_Ratvary, - -

1forn)$

Y

simple_Aralyre_depih: 4%

Analyze_Bilincar_Form(exp; :=
tlock{[power, Coesf, Rat_txp, Laft, 7tose, Sum, Label],
print{“Analyzing:"},
Ydisp{reveai{Exp.simple_snniyze_depth)),
teft: ryt(exp), Sum: O,
for var in Ratvars ¢o
(Powsr: Hipow(Lef¢, ¥ar),
if power » 2 ther
{Vose: ver“power,
trror(“Warning: Not a Bilinear Form because of ", lose)).
Coaf: ratcoeff(Left, var, 2).
4 a0t (Coel = 0) then
{ ¢rint("The roziiicient of ", var-2,” 15 *},
Label:Display_and_grind(Coef),
if not Froe_of_vars(ratvarsg,Coef)
then Lebsl: Anatyze Bilinear_Torm(Coef),
Sum: Sum + label ® Var-2,
Left: reat{left - Coef * (Var ~2)))).
print{"Nized torms: "),
Yor var in Ratvars do
- {(for war2 in Ratvars @o
it var ¢var2 then
(Conf: ratcoeff(leaft, varevar2, 1),
47 not (Coef = Q) then
(Print("Th? coafficient of =, Var®var2,” 12 %),
taoei:Dispiay_and_gring{loe?),
4f Mot Freec_Of_vars(RatVars, Coaf)
then Label: Analyze Bidinear_form(Coaf),
Sum: Sum + Ysbel * var® var2,
Lefs: rat{leTt - Coz¥ ? (Var * var2))))).
print(™ Linear Terms: *},
for var in Rgtvary do
(toef: ratcoeff(left, var, 1}, ',¢&}
if not (coel » 0) then "Ff’lfv
{ eprint("The Coefficiert of “,var,” i3 "}, oy,
Tabe):Display_and_grina(loe?),
1f Not free _Of_vars({Ratvare, Coef)
thon Label: Analyze_Bitinaar Yorm{loaf}.
Sum: Sum ¢+ Tabel®var,
Left: rat(Veft - Coef® Var))).
1 Luvt # D then
{Print(" And the constint term i3).
LaveY: Display_and_grind(laft),
gum: Sui 4 Label),
Print(" Vielaing :*), Display_end_prind{Sum}. Sum)$

/* Bruce R. Donald. (BRD8OZ) =%- Mode:Maciyms -°-
Attempt to eapress applicagbility constrainis for
C~gsurfacas in R-3 \cross $°3 #/

/° PRODUCTION VERSION -~ 1.e., for production of LiLP coce */
BYHETA: [phi, theta, psi)y

4f .Culer_Rotation_equations_loaded = YRUE then “OK~
¢1se Batchioad ([rotate.mac]):

shorten(enp):s subst{ S,sin, subst(C. ros, exp))$
catvars:[sin{phi).cos(phi).sin{theta) . cos(thera), sin(psi), cos(psi)];

/% Each constraint s of {hs form */ B
“‘o"io
Q' XX

()
/® vectors: */ ttley
TS
\‘,

u{t) :» Lunli).uyl[4).uz[4]):
v(1) v [walij,wy[i]).va[1]]):

/* Normi.l for pisne egq */

a(4) := [sx[1).ay[4].n2[4].0d(4]]:

/% Hera we define functions tn generate the epplicability constraints.
the argumenty are: Bn : & vertex in 3-gpace, which we uss to
measura disiance Lo the planas.
a vertex vhicnh we in3ist must be ON the plang,
: 8 plane (4-vactor)
: the "height™ of the Tevel suriace in $°3.
if 0, corresponcs to the marimim bouniary
of the applicability clauss {eg edge-face
contact).

N
R f,
g :@
QXL

L X
.

vs

Ri_rrojeciion{Vec) :~ [vec[1]. vec[2], vec[3]]$.

Typs B Clause(¥, bkn, v, ¢} :»
simp_3(
{(R3_Projection(¥) . Rotate_vector(3n}))
= (RI_Projection{k) . Rotate_vector(v))
- t):

Typn A_ctause{N, br, v, ¢} :=
Block{[K_ THETA]Y,
B_THETK: part{transform(Euler_lnvarse, ¥), 1),
gimp_ 3¢
(R Frojection({h THEYA) ., dr)
= (R Vrcjoctinn{H thate)y . W)

~c)):
Bigp(u,b) v 0+ (bra) il

Typo L1 Ciuse{nl, 62, al, &%, ¢l, €?) ‘e
simy Ny
« tyre b tlauseind, al, midp(ai.a2), ¢1)
®ogype b tiduse{n2, &1, midp(el,a2), c2));

Tyee Le Ntauee(R} W2, bi, 92, €1, ¢2) :»
simp_ 3
=~ type. A causu(nl, b1, midp(d1,b2), cl)
¥ otypet. clavie(nZ, bz, migp(bl,bz), <2));

% Yee[1) i3 just & CONSTARY fo construct v Level gurface on $-3 which
iz spplicabls v/

L el SR U T

AN TR

ol2] : typa.u_cleuse(n{i2}

fsge_ﬁ_An?nusa{i::
type?t_tkeustt

{xcgW), Y&{
{eeu), ye(u). ()},

%),

C(m). wC{N)3.

[erquy. yeivi. zetv)d,

lever):

Type_A_Actisussil]:

type_R_Cleuse([xc(R). YC(N)

/o al1)
af2]

A o1 4]
c.2{1

.
.
.

1:
] .

{ag{my, yclu). re(udi.
[ati{vy. yelv), zc{v)]l.

tavel):

type.d_clavse(w{si), s{i1), u(ki), i)
. w{32), v(xz), Vev[Z]) ©

. 20(H). WC(N)D.

tyre_a_clause{ n(11}, wiml), w(p?).

type s clausel a2} ulm2), w{p2), av[4a]) ¢f

v(aixd. v{aizy, evll). Tev[6])
u(t§2). Tev[7]. tev[8]) */

/* Griag the rosvits... ©/

priat(”
Type A Aclause[1]

print(”

type_cl_clause(mn(bi}, niney,
: type_c2_cleusel n(8l}, a/az), uw({bjil,

/A, YO 2€, VT are Cu0. 4iRBL2° BLCORROT TuRclions (MACRCS) wm L23

Tev(1

1aev[3])

1")8 Grind(Type_A_Rciause[1])$

Type_B_Actsuse1] : °)8 Grind(type_k_Aclauss[1])$

M

%

BN,

aTAW,"

246

AN

Uﬂ\

» s

R o
Jo 4% Bruce v. Jonslg. cspace conrtiaints in 3-Cimensions. -*- vassyma -O °f

S ..f{f groduction-n2rgion: i.a, produce 1isp code...
e T 'ag, NC ant 2C 4ra bactcessor nucrys Tor components of vectors */

vl S /* this mert section Tontaing the equations fur c-ru~fares 45
. L red & 37Y. se2 a4 505, tomas’® apetial plunning paper fur details. ¢/
DR -,'u . - ' .
LY Toud euler rotatron equations */
A ((Yfg. ;jf_Quiqfnf01nt1(h_equlli0“t_10!dﬁd v trus
i . A SRR $ndy "ok
ISR RREE {batchlora("wird$:{u-d.prodJrotate.iac”}.
S A LA avler, rotetion_souevfons _loaset:Leue);
} (! . "_" Vo . A .
E PR AR RT3 L LA B
| Lo avee 1 gk, ¥, 2):
: PR
G eaerss [xy, a
L IR ’ sia{phi), cos{prt). sn(tnete), cos{the.s),
sin{psi). enefpust) 3
| Yo
1% 8 veriex on 8, nd R{5+3) *4
(1 C AL+ xelat) . yo(ai), zci{nt)}:

" atons: [xc{nione), yc'etons), ac{efons}];
/% o vortyr oo 2 . and B{J+1) 3/

Bi: [refdl). yulhy). ze{uidd;
Sienu: [xc(ogone), ye(ajnre), 2cib,aune)):

/° the noreel Lo & ThAce 73 o0 ¢ %/
wté: [xe{nft). ye(ndi). ac{rfi}, we(ati)]:
/¢ the ourmal %o a face g an b 74
6gi s {xefapd). zo(ngd), Te(and), ss{epdids

/% typt & surace. rateid dhe normnl: 9/

R3_projactioniVec) := [ver[3], vecl?], #ecf3]]8
Bt NTi: part{transform{tuier Yrvorsa,rii},1};

Inner_iroduct_Tarm: (Rotate.vantorfai} + bi);
A_S: N_a . Fsec =~ (K_a . Ianer_Producrt Term);

/* Type 8 Surface °/

8b: 13 pvojection{Ngj);

6_6 : W b . Xvec ~ {N_b . Innar_Produci Verm);:

7° Tyoe € wurfoce (§) ¢/

Uage.a: rotate_vactor(afone) - rotate_ vector(el):
Edge_D: Bions ~ b4:
&.C: Crosc(Edge_s, Edpab):

€.b: N_C . Xvec = (M_c . Xnner_Product Term);

i . : 247

< 4% Sleplify §F possiptel ¥/ :

Simp.d(Exp. ¥ar) v ratiubat{l. sin{var)-2 « cos(var)-2. #xp);
sImp_3(Exp) = fot{Simp.1{ Simp 1(Stap_{ktxp. Phi), Thets). Psi)):

a_S: Simp_3(ratsimp(A_8)):

8_5: Simp_a(ratsiap(!_b)):
€.5: Sinp_l(ratsimp(cnb)):

[rengtn(a_%). length(b. %}, Tenpth(€.5)):
7° Grind the forms here ey

Printi”
lypc_l.tsurfnce[l] :*) § gring(a_8)$

Frint{”
!ype,B_Csurface{l] :*)% Grind{B_%)%

ecint{”
typl_c,£turface[1] :")$ Grind(C..5)$

AT LS =% - MODE: MACSYMN -4~

S {MIRE AKE MR DEIEMIVIONS GF YYPE (A} (B) &KD (C) C-SURFACES FOR

5 THE GDOT MOViKS PROBLEX, AMD TYPL (A) AND (8) APPLICABILITY
CONSYRAINIS . Ovtput of USPACE and APFLIC under PRODUCE for
grpduction fun.) */

Jype_f Csurtace[1] :

CLUXCENTT)SX-XE(BI YO RC(NFT})*COS(PRI < {XC{NFI)*Y-YC(BI)*XC(MFT))*SIN PHI))
SCOS{THETA)
+(-XC(NST)®2«ZC(EI)°XC{NT X)) STN{THETA)+(YC(NF1)*V-YC(BJ) YC(NF1))*COS(FHI)
+(-YC(NFI)oX-RC(BIJoVC(RFI)) SIN{PHL }-YC(NFI))

*COS(PSI)
+{{{~YC(NF1)*X-XC(BJ)*YC(NFT)})*COS(PHI)

+{ VC{BF1)*Y+YC(BJ)*YC{Ri 1)) S IN{PHI))

*COS(THETA)
~(YC(NFE)*Z-2C(BJ)Y*YC(NF1))*SIN(THETA)+(XC(NFT)*¥-YC{BJ}J*XC(NFI))°COS(PHI)
<{~XC{NFT)*X+XC(BI)*KC(NF1))*SIN({PHI1}-XC(WFI))

*SIN(PSY)={ZC(NF1)*2-2C(BI)*ZC(NF1))*COS(THETA)
+({ZC(NFI)*K-XC(BJ)*ZC{NF1))*COS(PHI }+(ZC(NF1)>Y-YC(BI)*2C(NFT))*SIN(PHI))
SSIN{THETA)-ZC{RI1)*2C(NF1)=YC(AT)*YC(NFI)-XC(AT)*XC(NF1)$

Type. 8 Csurface[1] :

((-XC(ATY*XC(NGJ)*COS (PHI)-XC(AI)*VC(NGI)*SIN(PH1))*COS(THETA)

+XC(A1)*2C{NGI} *SIN{ THETA)-YC(AT)*YC{NGJ)*COS(PHI}+VC(AL)*XC(NGI)*SIN(PHI))

*CGS(PST)

+{(YC(AT)*XC(NGI)*COS(PHT)+YC(AT)*YC{NGI)*SIN(PHI))°LOS(THETA)
~YC(AT)*2ZC(NGI)*SIN(THETA)=XC(AT)*YC(NGJI)*COS(PHI)+KC(AT)*XC{NGI)*SIN(PHI))
SSIN(BSTY=2C(RT)L (NGI)*COS(THETA)

+(~2C(A1)*XC(MGJI)}SCOS(PHI)-ZC{AT) YC(RGI)*SIN(PHI))*SIN(THETA)
~YC(NGJ)*COS(PHI)+XC(NGI)*SIN(PHIJ=ZC(NGI)2+YC(NGI) Y+KC(NGS)*K

~20(BJ)*ZL(NGI)-YC(BI)*YC{NGJ)-XC(BI)*XC(HGI)S

Typu S Lsurfacel] :

(L CRCOATONE Y =XC (AT))" YC(BIONE) +{~XC(AIONE)+XC(R1)) YL (BJ))2
S{(=RC(ATCAEYXC{AT))*2C(BIONE) +(XC(ATONE)~XC(AT))*2C(BI)) "V
+(¥C/ATORE}-XC(AL))Y*YC(BI)?ZC{BIONE)+ (~XC{AIONE)+XC(AT))*ZC(BJI)*YC(BIONE)
+(-YC(ATYS2C(A.DUE)~2C{AX)*YC(ATONE))*XC(BIONE)
+{YC{AL)*Z1C(RIONL)-2C(AL)*YC(ATONE))*XC(BY))

©COS(PHI)

S({(~XCIATONE)« LC(AT))*XC(BIOKE)+ {XC(ATONE j-XC(AT)}*XC(BY
<{(XC(AICHL) - X0 (A1))*2C(BIONE)+(-XL(ALONE)+ii{AL})*IC(BS
< (~XC{MIOHE)+XC(AL))"XC(BI)*ZC(BIONE)
+(=YC(AT)®2C{AL04E)+ TL(AL)*YC(ALONE))*YC(BJIOME)

S (XC(ATONT)-AC(AL))*2C(BI)*XC(BIONE)
+(YC(AYY ZC(ATONE)-2C(AT)°YC{AIONL))*YC(B3)}
SSIN(PHT)+ (KC(ALONE)-XC{AT))*ZC(BIONE)+(-XC(AINDNL j+XC(AT))*2C{D3))

*COS{ TRIYA)

“{ ((XC(ATONLY-RC(AL)59XC(BIOME }+(~XC{ATORE) +XC{RTY)>XC{BI))*COS(PH])
+({AC(ATONE)-RC(MI)) "YC(BIONE) »{ ~XU{AJONE)+XC(A5;)*YC(BI))SSIN(PKI)
<({ "XC(ATONE)>RC (AT })OXC(BIONE)« (XC{ATONE J=XC{AT)}*XC(BI))*Y
#{(XC(AIC E)=HC{AY)) VC{BIONE)+{-XL(AYONE)+XC(A1))*YC{BJ))*X
*(YC{AT)*2C(NTOME)-2C(AT)*YC{£JONE))* 10 {BIOKE)
+(-XC(AIONL)+XCIAT})*XC(BI)*7C(RIONL)~{ KC(AIONE}~XC{AL})®Y 13)*XC{BJIONE}
+(~YC(AT)*2C(AMECRE)«2C{AY)YC(ATONE))*2C{R)))

PSIN(THETR)

+(({~YC(RTOBEj+YC{AT))" XC(BIORE)+{YC(AIORE)-YC{AT)JoXC(BI))2
+((YC(AYONT}~VC(RL) 1 2C(BJIONE Y +£-YC{KTONE J+YC(AL))2 2C{BI))X
<{=(C(ATOKL }+YC(AYT})*XC(BI)*ZL {BIOKE}

H{XC(AYT) 2C(LIONL Y~ TC{A1)*XC(AYONE })*¥C{BIONE)
A (YC(ALDNL)~YC(RT) I IT{BI) AT {BIOKE)
4L XC{AIYI®ZL(AYGNE) +2C(AT)*XU(ATONE)Y}*YC(BD))

N
)i

249

R N O S S S R N RN S N RV Y CaV 7% SFW. aVE"yWE UE UK SR

v . () . '
b, .t't-‘,‘t&-

b hel
5!" _t‘

R

L W Sy \."‘-Phh.‘

“COS(PHI)
+(((~YC(ATOME)+YC{AY))*VC(BJONE)+{ YC{ATONE)-YC(AI))*YC(BJ))*2
“+((YC(ATONE)-YC(AT))*2C(BIONE)+(~YC(AIONE)+YC(AI))*2C(BJ))*Y
+(~VC(ATOME)+YC{AZ))*¥C(BJ)*2C(BIONL)+(YC(AIONE)-YC(AT))*2C(8I)*YC{BIONE)
«(~XC(A1}~ZC(ATONE)+7C(AT)*XC(ATONL))*XC(BIONE)
_. +(XC{AT)*ZC{AIONE }-ZC(AT)*XC(AIONE })*XC(8)))
*SIN(PHI))
©COS(PSI)
«(({((~YC(ATONE)+YC(AZ))*YC(BIONE)+ (YC(ATONE)-YT(AL)}*YC(BI))*2
+((YC(ATONE)-YC(AI))*2C(BIONE)+{-VC(AIONE)+YC (A1) }*ZC(BJ))Y
+{~YC(ATONE)+YC(A1))2VC(BI)*2C(BIONE)+ (YC(ATONE)-YC(Al))*ZC{BI)*VC(BIONE)
+{-XC(AI)*ZC(ATONE)+2C{A1)*XC(ATONE))*XC{BJONE)
+(XC(AI)*IC(AIONE)-2ZC(A3)*EC(AIONE))°XC(BJ))
©C05(PHI)
+(((YC(ATONE)~YC(AX))*XC(BJIONE)+(~YC{AIONE)=YC(AI))*XC(BI)}*2
+((~YC{AJONE)+YC(A1})*ZC(BIONE)+(YC(ATONE)-YC(AI))*ZC(BI))X
+(YC(ATONE }-YC(AT))*XC(8J)*2C(BIONE)
+(~XC(AT)*ZC(AIONE)+2C(A1)*KC(ATONE))*VC(BJIONE)
+(~YC(ATONE)+YC(AT))*ZC(8J)*XC(BIONE)
+(XC{AI)*ZC(AIONE)~ZC(A1)*KC(AIONE))*Y((8J))
*SIN{PHI)+(-YC(AIONE)+YC(AI))*2C{BJIONE)+(YC(AIONE)-YC{AT))*2C(8I)})
*COS(THETA)
+(((~YC(AIONE)+YC(AI}))*XC(BIONE)+(YC{ATONE)~YC(AT)}*XC{BJ))*COS{PHI)
~ +{(~YC(AIONE)+YC{AT))*YC{BIONE j+(YC(ATONE)-YC(AT))*YC(BJ))*SIN{PHI)
+((YC(ATONE)-YC(AL))*XC(BJIONE J+(~YC(AIONE)+YC(AT))*XC(BI))*Y -
+((~YC(AIONE)+YC(AT))*YC(BIONE)+ (YC(AIONE)-YC(AL))*YC(BI))oX
+(XC{AI)*ZC(ATONE}-2C(AI)*XC{AIONE))*2C(BIONE}
+(YC(ATONE) ~YC (AT))*XC(BI)*YC(BIONE)+(~ YC(AIOHE)#YC(AI))‘YC(BJ)'XC(BJOIE)
+(-XC(AT)*ZC(ATONE) +2C(A1)*XC(AIONE))*2C(BI))
*SIN(THETA)
+(({-XC(ATONE)+XC(AT))*XC(BIONE)+(XC(ATONE)-XC(AI))*XC(83))*2
+((XC{ATONE)~-XC(A1))*ZC(RIONE)+ (-XC(AIONE)+XC(AL))*2C(BI})*X
+(~XC{ATONE}+XC{AT))*XC{BJ)*2C{BIONE)
+{=YC(AT)*2C(AIONRE }+ZC{AT) *YC{AIONE) joVC{BIONE)
+(XC(RIONE }-RC(AI})*ZC(BJ)*XC{BIONE)
+(YC{AI)*2ZC(ATONE)-ZC(AT)*YC{ATIONE))*YC(8I))
*C0S(PHI) _
+(((-XC(ATONE)+XC(AT))°VC(BIONE)+(XC(ATONE)-XC(AI1))*YC{BJ))*2Z
+((XC{ATONE}-XC(AT))*ZC(BJIONE)+(-XC(AIONEJ+XC(AL))*2C(RI))¥
+{=XC(AJONE)+XC(A1))*VC(8J)"2C(BJIONE)+(XC(ATONE)-KC(A1))*ZC{BJ)*YC{BIONE)
+{YC(AI)*ZC(ATONE)~ZC(AT}*YC(AIONE))*XC(RIONE)
+(=YC{AT)*ZC(ATONE)+2C(AI)*YC{AIONE))*XC(BJ))
*SIN{PHI))
*SIN(PSI)
+{((~2C(ATOME)+ZC(AY))*XC(BIONE)+ (ZC(ATONE)=ZC(AT))*XC(BI))°COS(PHI)
+((~ZC(ATONE }+2C{A1))*YC(BIONE)+ (ZC(ATONE)-2C(AT1))*YC(BJ))*SIN{PRI)
+((ZC(ATONE)~ZC(AJ}}*XC(BJONE)+{-ZC(ATONL)+IC(AI))*XC(BI))*Y
+((=ZC{ATONE)+ZC(AI)}°YC(BJIONE)+(ZC(AIONE)~ZC(AI))*YC(BJ))"K
+(~XC(AT)*YC(AIONE) +YC(AT)*XC (AIONE))*2C(BIONE)
+(2C(ATONE)~2C(AT))*XC(BJ)*YC(BIONE)+(~2C{ALONE)+2C(AL))*YC(BI)*XC(BIONE)
+(XC(AT)*YC(ATONE)~YC(A1)*XC{AIONE))*2ZC(8J))
*COS(THETA)
+((((2C{ATONE)-ZC(AT))*YC(BIONE)+(~2C(ATONE)+ZC(AI))°VC(8I))*2
+((=ZC{AIONE)+2C(AT))*ZC(BIONE)+{ZC(ATONE)-2C(A1))*ZC(BI)}*Y
+(2C(ATONE)=2C{A1))*YC(BJ)*2C(BIONE)+(~2C(ATONE)+2C(AL))*2C(8I}*YC(BIONE)
+(~XC(AT)*YC(AIONE)+YC(AT)*XC(AIONE))*XC(BIONE)
+(XC(AT}SYC(AIONE)=YC(AI)*XC{AIONE))°XC(BJ))
*COS(PHI)
+(({~ZC(AIONE)+ZC{AT))*XC(BJIONE)+ (ZC(ATONE)-ZC(AL))*XC(8I))*L
+({ZC(AIONE)-2C(AT})*2C{BJORE)+(-2C(AIONE)+ZC(AI))*ZC(8I))*X
+(-ZC(AIONE)+2C(AY))*XC(8J)*2C(BIOKE)
+(~XC(AT)*YC(AJONE)+ YC(AT)*XC(AICNE) }*YC(BIONE)
+{2C(ATONE)-2C(AI))*2C(BI)*XC(BIOKE)
+(XC(AI)*YC(AYONE)-YC(AI)*XC(AIONE))*YC(BI))
SSIN(PHI)+(ZC(AIONE)-2C(A1))*2C(BIONE)+(-2C(ATONE)+ZC(A1))*ZC(BI))
*SIN(THETA)S

£® Herer gre the Applicability constraints */

250

Type A Aclause[l] -

CCARC(L)=XC{V))*RC (M) *COS(PHI)+(YC(U)-YC(V))*XC(N)*SIK(PHI))*COS(THETA)

~4(=2C(U)*+2C(V})*XC(N)"SIN(THETA)+(YC(U)-YC(V))*YC(N)*COS(PKI)

C+(-KC(U)+XC{V))*VYC(H4)*SIN{PHI})

*COS(PSI)
+(((=XC(U)+XC(¥))*YC(N)*COS{PHT)+(~YC(U)<YC(V))"YC(N)*SIN(PNI))*COS(THETA)
+(2C(U)-2C(V))*YC(N)*SIN(THETA)+(YC{U)-VC(V)) *XC{N} *COS(PMI) -
+{~XC{U)*XC(V))*XC{N)*SIN(PHI)) TR
*SIN(PST)+(2C{U)-2C(V))*ZC(N)*COS(THETR)
+{{KC(U)-XT(V))*2C(N)®COS(PHI)+(VC(U)-YT(V))*ZC(N) SIN(PHI))*SIN(THETA)-LEVELS

Type_B_Aclause[1] :

((é8;€$N);:§(V)¢KC(N)'IC(U))'COS(?NI)6(-VC(N)'!C(V)*YC(!)'!C(U))'SIH(PHI))

. HE

+(ZC{N}*XC(V)-ZC{N)"XC(U))*SIN(THETA)+ (~YC(N)*YC{V)+YC(N)°YC(U))*COS(PHI)
“{(XC(N)*YT(V)-XC{N)*VL(U))*SIN({PHI))

*COS(PSI)
+(((XC(N)™YC(V)~XC{N)*YC(U))*COS(PHI)+(YC(N)*YC{V)-YC(N)*¥C(U))*SIN({PHI))
*COS(THETA)
+(=ZC(N)*YC(V)+2C(N)*YC(U))*SIN(TREYA)<(~YC(N)*XC{V}+YC(N)*XC(U))*COS(PHI)
+(KC(W)*XC(V)=XC({N)*XC(U))*SIN(PHI))
*SIN(PSI}+(~ZC(N)*ZC(V)+2C(N)*2C(U})*COS(THETA) _

+((=XC{N)*2C(V)+XC(N)*ZC{U))*COS(PHI)+(-YC(N)*ZC{V)+YC(N)*ZC(U)) *SIN(PKI))
*SIN{THETA)~LEVELS

i' =%- M0ge: macsymp -°*-
{Rruce Donalo. Here we Express a Constraint (C-surface or
Acf) in Canonical Linsar Form and Cenonicel Trig form.

Given & CONSTRAINY which ig either a
C-surface or an ACF {(applicability clause fuaction)
and a variable (VAR) we solve for the variadle) */

Load_up():= /* load necessary files */
block([]. /* for gsolving */
" 41 ALL_DEFS_LOADED = YRUF then =0K~
else batchioad(usrd§:[brd.proc]defabec.mac™),
batchicad{[intabc.mac]).
batchload("usras:{brd.prodJanalyze2.mac™),
Rotvars: [x, y. 2,
sin(phi), cos(phi), sin(theta}, cos(theta),
sin{psi)., cos(psi)].
Angles: [Phi, Psi, thets])$

Loso_uvi ()8
/® give us an Texplicit™ tangent space o/

s{var) := sin(var)$
c(var) := cos{var)$
Build_Menifelrd()$ /* Rebhuild Manifold o/

solve_for_sngle{exp, var):s /* Solve for COS(var) */
block([Rats, R1, K2, RZ],
rats: ratvars,
Ratvars: [c(var), s(var)],
print/"Simpiifying..."),
R1: IsolateN(exp. Ratvars).
Frint{ "tYiminating . s{vsr)."...").
R2: Elisinate[1](R1, Var),
Ldisp(R2),
Print("Solving for *, c(var),”...").
- R3: solve(R2.c(var)),
display_and_grind(R3),
ratvars:rats,
r3)$

Solve_for_X(Exp, Xvar):e /¢ Solve for Any Var */
Block{[Rats, r1, A2],
Rats: ratvara,
Ratvars: [Xvar),
print("Simplifying..."),
R1: IsolateM(Exp, Ratvars].
! print(" Solving for =, Xver,",..%).
{ r2: solve(Rl, Xvegr),
: Display_and_grind{r2),
retvars: rats,
R2)$

Solve_test{):= /* Tesi the Solution Routines */
block([].

grind(solva_test),

grind:false,

Solve_for_angle(Csl, Phi),

Solve_for_X(CS1, X),

7* 50ive g type (8) surface for PSI and Y */
AS1: SinCos_to_CS(type_A_CSurfac~l1]).

Soive_for_angle(AS1, Psi),
Solve_for_X(AS1, y).

/% SOlve & type (B) surface for PSY and Y %/

TR TEVENTR T AT

8S1: SinCos_to CS(type_8_CSurface[1]),

Sotve_for_angla(B8S1, Psi),
Solve_for_X(8S1. y),

Notify()
)8

/4% CExpress expresses things Canonically */

CExpress(Exp, Typs) :»
8Lock([]. ’
If Yype = C_Surface then
(Print("Canonical Linear Form ..."),
Canonicel_Yinear_form(Exp)).
Print("Solving for Angles...").
for vVar in Angles do
(Soive_for_angle(Exo, Vvar)))$s

/* Here we Do the Expression. Now to get Ground forms, just change GRIND, etc. */

DO_CExpress():=

sLock([],
Grind: False, /* Here it is.. */
k111 (Yabers),
CExpress{type_A_Csurface{1], 'C_Surface),
CExpress(type_B_Csurface[1]. *C_Surface),
Cexpress(type_C _Csurface[1], 'C_Surface).
CExpress{type_A_Aclause[1], °ACF),
CExpress(type_B_AClause[1], °'ACF))S

/% -*- Wacyyma =~ BROGOZ (Bruce R. Lonald).
Sove frntersoctions of C_surfaces and A_clauses,
for the 6dof movers problem, */

Angles: [theta, Phi, Psi])s

7* allow some simplification in1p € ancd § terms */

SinCos_to_CS (exp) :»
8lock([E].
E: exp.
Tor Var in Anglas Do : .
€: ratsubst(s[var], sin{var), :
ratsubst{c[var], cos(var), E}),
rot(€))s

/* permit 1he inverse */

€S_to_SinCos (exp) :+
Block([E],
E: exp,
for Var in Anglas Do
E: ratsubst{sin(var), s{var],
" ratsubst(cos(var),.c[var], E)).
E

/% The Tengent Spaca Manifold */
/* DO 1t yourself, pal! obatchlcad{[defabc,mac, “usrd$", drdal) */
/° Short form functions ¢/

s(var) := gfver]$
c{var) := ¢fvarls

/* SImplify 1f possible? use the s/c[var] form though, S/
Simp_S({Exp, Var) :» ratsubsi(l. s(var)-2 + ¢c(var)~2, exp)$,
simp_3(Exp) := Rat(

Simp_2{ Simp_1(Simp_3(Erp, Phi), Theta), Psi))$

sanifold(var):es s(ver)-2 + ¢(var)-2 = 3%

Syilg_manifold() :=

'105‘([]0
Man{thetal: manifold{theta),
Wan[Phi] : Manifold(pht),
Man[Psi] : Manifole{psi))$

Suiltd_manifo1d()$

/* Eliminatef1) eliminates the dual trig term. $-1 13 parameterized by
one variadls (var). Eviminates SIN{VAR) from EXP */

eliminate[iJ(exp, var) :=
biock{[].
Templ: rat(part(
elimtnato([exp, Man{var}), [s(ver)]).1))
)3

/° Eliminatef2] callx gliminate[1]) twice, and aliminates the resultants.
Hence the intergection of two level surfaces on $-3 4g
paraneterized by 8 one param. ¥amily. Eliminates Sin/cos Vari/var2
from Exp. ¢/

USE_CS.FORM: True$

«liminote[2](expl, oxp2, varl, var2) :»

olock([R1, R2, RI, R4, RS, rb, /* Temp results */
Lel, Le2, Lry, Lrd, Lrd, Tre]. /* Tneir Labels */
Ratvars: [n, y. 2,
s(phi), c(phi), s(thets). c(thets),
$(psi). c(psi) J.
if Use _CS_FORM then
(expl: SinCos_TO_CS(expl),
. erp2: SinCos_To_CS(exp?)),
print("EViminate ~,s{vari),” from expression 1:%),
r1: eliminate[1](enpl, varl),
Lrl:disp(rl), .
print("Eliminste ",%{varl),” from expression 2:7),
r2: eliminate[1])(exp2, varl),
Lrz:¥disp(r2),
print("Eliminate ",c(var1).” from ".append(LR1, LR2)),
rd: rat(eliminate([rl,r2]).[c(var1)])).
Lrd: Ldisp(RY),
print("Eliminate ~,s(var2),” from ", Lrd)},
R4: eliminate[1)(R3. vard),
Lrd: Logisp(R4),
Print(™ Solve =, Vrd4," for ", c(var2)),
R5: rat{Solve(R4, c(var2))).
LebS: Ldisp(R5).
print{"Finally, solve ".Lr1,* for " .c(vari)}.
R6: rat(soive(R1, c(varl))),
Lro: 1disp(RE).
Append(172,1r2,1r3,1r4,1r5,1r0))$

Test():»

eliminate[2](type A_Aciausefl],
type A_Aclause[i],
LT

Psi)s

7% =*- Noge: |csyny ~*-
(file to Run Production of 3d Space equations,
Bruca R. Donald. MIT Al LAB) */

/¢ Define the typs ABC constraints. */

Abcfine_AIC():-
btock([].
. batch("USRDS:[brd.prod]Cspace.mac”))$

7° Define the appllicability Constraints */

Define Applic{):s ~
B8lock({].
Batch(“USRDS:[brd.prod]Applic.mac”™}))$

/* Define Both */

Produce_Dafs{):»

block([].
Writefile("usrdS:[brd.prod]Produce.log"),
Batch("usra$:[brd.prod]Rotate.mac”),
Define_ABC().
Define _Applic().
Closefile(),
Notify())$

Coid_Restart():=

block([].
batchloed("sysSlogin:utils.mac”),
batchload(“usrd$:[brd.proolproduce.mac™),
Produce_defs())$

/% Here's & function to save labels for you. */

Save_labels(file):s

plock([].
T0pen_output_file(file),
for Label in Appond{ reverse(labels(s)). reverse(labels(d)))
Do

(16rind_TO_FILE(Labal), Print{Ladel)),
TCiose_Output_file())$

/% Produce the EXPRESS filas, parsing into solutions and coefficients, ©/

Producs_Eapress():e

block([].
writef{la(usrdS:ford.prod)Express.vog”),
batchi{“ueras.Thrd. orodlExpress.mac®),
DO_CExpress{),
Print(" Saving Labels in LSP f11e...7),
Save_Labels("USRDS:[brd.prodJEXPRESS.LSP"),
Notify())$

/* this Tunction produces EVERYTHING. ©/

Produce _ALL{):=

BLOCK([).
Produce_Defs().
ALL_DEFS_LOADED: TRUE,
KIY(NFi, Ngj, Af, Aione, Bj, Bjone),
Type_A_Csurface[1] : AS,
Type_B_Csurfacal1]): B_S,
Type C.Csurface[1]): C_6,
Produce_sxpress(),
closefile())$

/¢ Bruce R. Donald (BRD@OZ) Euler Rotatvons for Macsyma. Sge -"- MACSYMA -°-
Payl, p 45 */

c(angle):= cos(angle)$
s(angle):= sin{angle)$

Rot_x_pai:

matrin(
[c(pst). =-s(psi). 0, 0].
[s(psi}. c(psi), 0. 0).
[o 0. 1. 0].
{o. 0. 0. 1))

Rot_y_theta: matrix(
{ c(theta), 0. s(thets), 03.

{o. 1, 0, 0]). .
[-s(thete), O, c(theta). 0],
[o. 0, 0, 11):

Rot_Z_Phi: Matrix(
| [c(oni), -s{pht), 0, 03,
; [s(eni). c{pni), 0. 0],
[o. 0. 1, 6],
[o. 0. 0. 1]):

Euler_temp: Rot_Y_Theta . Rot_I_Pss;

Euler_matrix: flot_Z_Ph1 . Euler_tomp;

homogenize{X):* [x[1]. x[2]. x[3]. i]:

UnHomogenize(X) :« [a[1)/a[4], x[2]/x[4]. x[3]/x[4]]:

Rotate.vector(X) := UnHomogenize(Euler_Matrix . Homogenize(X)) :

7* Cross Product =7

Cross(A,.B) :=

[(a[2)°b[3] - a[3]°b[2]).

(af3]*0[1) - a[1]°0[37). P
(e{1]°e[2] - al2])"o[i])]:

/° Slmplify {f possible? =/

/

Simp_1(Exp, Var) := rotsubst(l, sin(var)-2 + cos(var)-2, exp);
simp_3(Exp) := Rat(:
Simp_1(Simp_1(Simp_1(Exp, Phi), Theta), P2i));

/¢ Geners) Transformation function. A 4~vector s assumed to be a plane,

ang a d-vector 8 3-vector. hence the 3-rector iy ROTATED and s 4-vector
alana 42 slen rotsted | Sax DAIN 9/

Transfora(Transformation_matrix, X) :=

8lock([Hon, Trans.ans],

Ang: “"Whoops!®,

1 Tength{X) = 4 then
Ang: 2 .Transformation_materix
€1se
if length (x) = 3 then
Ans:Unhomogenize(Transformation_matrix . Homogenize (X))

Elze Print(™ But ",x.” Must be a 3-vector or 4=-Vector!”),

Ans);

/* tiow Compute Inverse of the Euler Tramaformation ®/

E_Adj: simp_3(rat (edjoint(Evler_matrix})));

References

Baer, A., Eastman, C,, and Heurion, M. “Geometric Mcdeling: A survey,”
Computer-Aided Design 31, 5 (1979).
Binford, Thomas “Visual Perception by Computer,” IEEE Systems Science and

Jonference Miami 1971,

VY e

Brady, J. M. et al. Robot Motion: Plenning and Control , MIT Press, Cambridge,
MA, 1983.

Brady, J. M. “Criteria for Represcntations of Shape,” Human and Machine
Viswon eds. Rosenfeld A., and Beck J., 1982.

Brady., J. M. “Smoothed f.ocal Symmetries and Local Frame Propagation,” Proe.
Patt. Rec. ond La. Proc. , Las Vegas, 1982b.

Brooks, Rodney A. “Symbolic Error Analysis and Robot Programming,”
] urnal of RRobetics Research &, no. 1 (1982).

wnarl B
DRV R CRCEL

Internalionu

Brooks, Rodney A. “Solviug the Find-Path Probiem by Goo:l Representation of
¥ree Space,” IELE Transactions on Systems, Man, end Cybcrnciics SMC-43
(1983a).

Brooks, Rodney, A. “Find-Path for a I'dMA-Class Robot,” AAAT, Washington,
DC, 1983b.

Rtrocks, Roduey A. aned Lozane-Pérez, Tomas “A Subdivision Algerithmn
in Coalizuration Space Tor Fradpath with Rotations,” [nternational Joint
Conference on Artif cial Intelligence |, Karlsruhe, Germsauy, 1983.

Brou, Phitippe Fiading the Orientation of Objects in Vector Maps, Ph.D Thesis,
Departmeri of Bleabrieal Bugineering and Coinputer Science, Maszachusets
Inciitute of Technolrgy, 1983,

Barke, G. et al. “The Nili Hinlerence Manaal,” Laboratory for Computesr Scicne.
Missackusetts Irstitate ol Technoinpy, 1983.

pitd

Canny, Jehn “On Detecting Coblisions Bevween Polyhedra,” Furopcan Conference
on Artificial Intelligence | Pisa, ltaly, To be presented October, 1984.

Chatila, Raja System de Navigation pour un Robot Mabile Autonome: Modelisation
et Processus Décisionnels, Ph.D. Thesis, L'Université I’aul Sabatier de Toulouse,
1981.

Chazclle, Bernard “Computational Geornetry and Convexity,” Department of
Computer Science, Carnegie-Mellon University, CMU-CS-80-150, 1980.

Dobkia, Pavid P. and Kirkpatrick, David G. “Fast Dctection of Polyhedral
intersections,” Departmeny of Electrical ENgineering and Computer Science,
Princeton University, 1980.

Donald, Bruce R. “The Mever's Problem in Autoraated Structural Design,”
Preceedings, Harvard Computer Graphics Conference , Cambridge, July, 1983b.

Donald, Bruce 1. “Hypothesiziag Channels ‘Through Free-Space in Solving the
Findpath Probism,” Artiicial Intelligence Laboratory, Massachusetts Institute
of Technology, A.l. Memo 7395, June, 1983a.

Ponald, Bruce . Local and Global Techniques for Motion Planning, S.M. Thesis,
Department of Elecirical Engineering and Computer Science, Massachusetts
Institute of Technology, May 10, 1984.

Orysdale, obery L. Generalived Voronoi Digrams and Geomeiric Scarching,
Deparurent of Computer Science, Stanford University, 1979.

Erdmann, Michael On Motion Planning with Uncertainty, Department of
Wlectrical Engincering and Computer Science, Massachusetis Institute of
Technology, August, 1984.

Foley, J. D. and van Dam, A. Principles of Iteractive Computer Graphics ,
Addison-Wesley, Reading, Mass., 1982.

Forbus, Kenneth . “A Study of Qualitative and Geometric Knowledge in
Reasoning about Motion,” Massachusetts Institute of Technoleogy Artificial
Intelligence Laboratory, AI-TR-615, 1981.

Giblin, I’. J. Graphs, Surfaces, and tlemology , Chapman and Hall, London, 1977.

Gouzenes, Laurent “Strategies for Solving Collision-Free Trajectories Problems
for Mobile and Manipulator Robots,” Laboratoire d’Automatique ¢4 4’ Analyse
des Systemes du CNRS, Toulouse, France, 1983.

Grunbaum Convez Polyiopes , Interscicace Publishers, London, 1967.

Hamilton, W. R. Ilewents of Quatcrnions , Chelsea PPubiishing Co., New York,
1969.

Hirsch, M. Differential Topology , Springer-Verlag, Tiew York, 1976.
Hlocking, J. and Young, G. Topology , Addison- Wesley, Reading, Mass., 1961,

Hopcroflt, J., Josepl:, D., and Whitesidez, & “On The Moveroent of Robot,
Arms In 2-Dimcusional Regions,” Cornell University, TR 82-485, 1982.

N
L
niet
i

Yy

- Hopceroft, J. and Wilfong, G. “On the Motion of Objects in Contact,” Cornell
University, Computer Science Departinent, TR 84-602, 1984.

Hopcroft, J. and Wilfong, G. “On the Motion of Objects in Contact,” Corneli
University, Computer Science Department, T 84-602, 1984.

Kalay, Yehuda E. “Determining the Spatial Containment of a Point in General
Polyhedra,” Computer Graphics and image Processing Vol. 19 (1982), 303-334.

Kane, T.R. and Levinson, D. A. “Successive Finite Rotations,” Journal of
Applied Mechanics & (1978).

LCS Mathlab Group “MACSYMA reference Manual, Volumes 1-1,” The Mathlab
Group, Laboratory for Computer Science, Massachusetts Institute of Techno-
logy, 1983.

Lozano-Pérez, Tomads “Spatial Planning: A Configuration Space Approach,”
IEEE Transactions on Computers C-32 (February, 1983).

—— “Automatic Planning of Manipulator Transfer Movements,” IEEE Transactions
on Systems, Man, and Cybernetics SMC-11, No. 10 (1951).

Lozano-Pérez, T., Mason, M., and Taylor, R. “Automatic Synthesis of Fine-
Motion Strategies for Robots,” Massachusctts Institute of Technology Artificial
Inteliigence Laboratory, A.l. Memo 759, 1983.

Lozano-Péresz, T. and Wesley, M. A. “An Algorithm for Planning Collision-
¥ree Paths among Polyhedral Obstacles,” Communications of the ACM 22, 10
(1979).

Mason, M. T, “Compliance and Force Control for Computer-Controlled Manipulators,”
SMC-6 (1981).

Masscy, Win. S. Algebraic Topology , Springer-Verlag, Mcw York, 1967.

Moravee, . P. “Visual Mapping by a Robot Rover,” Proccedings Sizth
International Joint Conference on Artificial Intelligence , Tokyo, Japan, 1979.

Nguyen, Van-Duc “The Find-Path Problem n the Planc,” Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Al Meme 780, 1983.

Nievergelt J. and Preparata, . “Planc-Sweep Algorithms for Intersecting
Geometric Figures,” Communications of the ACM 25, 10 (1982).

Nilsson, Nils Principles of Artificial Intelligence , Tioga Publishing Co., Palo-Alto,
1980.

(')’D{mlning, C. and Yap, C. “The Voronot iagram Mcethod of Motion Planning:
I. The Case of a Rise,” Ccourant Instituie of Mathematical Scicnces, 1982.

(i)’l)l'mlaing C., Sharir, M, C. and Yap . “Retraction: A New Approach to
Motion Plannnyg,” Courant Institute of Mathematical Sciences, 1982,

G’Netll, B, Elementary DDifferential Geomeiry , Academic Press, New York, 1966.

Panl, L. Robei Manipulation , MIT press, Cambridge, MA, 1981.

260
- P .- . e e - " - - . PR
o M W e A ¢ M W Y e O L T Ol e T o e TR et A T TR A T e e T e .ﬂ-f‘-f‘n'f:'hﬂﬁ'f\-%b\
S

Poppiestone, R., Ambler, A., and Belioa, L. “An Interpicter for Describing
Assewmblies,” Artificial Mniellgence 14, no. 1 (1680C).

Preparats, I and Hong, S, “Convex Hulls of Finite Sets of Pants in Two and
Three Dimensions,” Cemmunicalions of the ACM 23, 3 (1977).

Preparata, F. and Muller, D, “Finding the Intersection of n Half-Spaces in Time
O(nlog n),” Coordinaved Scicace Labhoratory, University of Illirois, Urbana,

1., R-803, 1077.

Reif, John M. “The Complexity of the Movers Probicm and Generaltzations,”
DProceedings, 20 Syraposivin on the Foundations of Computer Science , 1979.
§9) ;

Requicha, A. A. G. “Representation of Rigid Solids: Theury, Methods, and
Systems,” ACM Compuiimg Surveys 1%, 4 {1980),

Schwartz, Jacsb and Sharir, Micha “On the Piano Movers Problem, It The
case of a Two-dimensicnal Rigid Polygonal Body Moving Amidst Polywonal
Barricrs,” Courant Institute of Mathematica: Sciences, Report No. 39, 1681.

Schwartz, Jacob and Sharir, Micha “On the Pias.o Movers Problem, II: General -
Techniyues for Computing Topological Properties of Real Algebraic Manifolds,”
Courant Irstituie of Mathematical Sciences, Report No. 41, 19%%a.

Schwartz, Jacob and Sharir, Micha “On the Piano Movers Problem, III:
Coordinating the Motion of Several Independent Bodies: The Special Cuse

of Cireular Bodies Moviag Amidat Polygonal Barriers)” Courunt Institute of
Mathematical Geiences, 1982b,
Sechrest, Stuart and Grecaberg, Donald “A Visible Polygon Reconstruction
Algorithm,” AUM Transactions on Graphics Vol. 1, No. 1 (198%), 25-42.
Spivak, M. A Compre/iznsive Iniroduction to Differential Geometry , Publish o
Perish, Inc, Berlieley, CA, 1979.

Sutherland, Sproull, ¢tal. “A Characterization Of Ten Hidden-Surface Algorithins,”
Acm Computing Surveys 6, 1 (1374).

Symon, K. K. Mechanics , Addison-Wesely, Reading, Mass., 1971.

Uclupa, S. Collision Detection and Avoidance in Comput r-Controlled Manipul-
at- s, Ph.D Thesis, Department of EFlecurical Enginneri:g, California Institute
of I'echnology, 1977.

Widdoes, C. “A teurisiic Collision Avoider for the Stanford Robot Arm,” Stanford
Artificial Intelligence Laboratory, 1974,

Wingham. M. Planning llow to Grasp Objects in a Cluttered Environment, M.
Phil. Tlesis, Department of Artificial intelligence, ¥dinburgh, 1977.

Winston, P. II. and Horn, B. K. P. LIP , Addison-Wesely, Reading, Mass,,
1981.

261

{ » p ¥ . A} - LN . 3 [) ',"-‘..' b e S W Tw L TR LT e TR e '\"‘. R e TR N T T T —\"."'—\ T %Y
P N R s W T N I L R ey T A N T T T A A A e T R R N S S

DISTRIBUTION:

Defense Technical Information Center

Computer Sciences Division
ONR, Code 1133

Navy Canter for Applied Research in Artificial Iatelligence
Naval Research Laboratory, Code 5510

Dr. A.L. Slafkosky
Headquarters, U.3. Marine Corps (RD-1)

Psychological Sciences Division
ONR, Code 1142PT

Applied Research & Technology
ONR, <Code 12

Dept. of the Navy

Naval Sea Systems Command
NAUGEA 90

Dr. Charles Schoman
David Taylor Naval Ship R&D Center
NSRDC 18

